J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 1 (2021), pp. 75-82

ISSN (Online): 2582-5461
ISSN (Print): 2319-1023

EXPLICIT EVALUATION OF RATIOS OF THETA FUNCTIONS

K. Shivashankara and G. Vinay
Department of Mathematics, Yuvaraja's College, University of Mysore, Mysuru - 570005, INDIA E-mail : drksshankara@gmail.com, vinaytalakad@gmail.com

(Received: Sep. 05, 2021 Accepted: Nov. 08, 2021 Published: Dec. 30, 2021)
Abstract: In the literature one can find evaluation of ratios of theta function $\frac{f(-q)}{q^{\frac{n-1}{24}} f\left(-q^{n}\right)}$ for $n=2,4,5,7,9,25$. The purpose of this article is to obtain evaluation of $\frac{f(-q)}{q^{\frac{2}{4}} f\left(-q^{6}\right)}$ for certain rational k with $q=e^{-2 \pi \sqrt{k}}$.
Keywords and Phrases: Theta functions, Continued fraction.
2020 Mathematics Subject Classification: 11J70, 14K25.

1. Introduction

For any complex numbers a and q with $|q|<1$, we define

$$
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right) .
$$

Ramanujan general theta-function $f(a, b)$, [6, p. 197], is defined by

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b, a b)_{\infty}, \quad|a b|<1 . \tag{1.1}
\end{equation*}
$$

He also defines [6, p. 197],

$$
\begin{equation*}
f(-q)=f\left(-q,-q^{2}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{\frac{k(3 k-1)}{2}}=(q ; q)_{\infty} . \tag{1.2}
\end{equation*}
$$

