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Abstract: In this investigation of a spherically symmetric shear free anisotropic
fluid we present a new model of the general relativistic field equations by using
Tewari and Charan [1] solution as a seed solution. The solution is having positive
finite central pressures and central density. The ratio of pressures and density is
less than one and casualty condition is obeyed at the centre. Further, the outmarch
of pressures, density and pressure-density ratio, and the ratio of sound speed to
light is monotonically decreasing. The central red shift and surface red shift are
positive and monotonically decreasing. Further by assuming the suitable surface
density, we have constructed a compact star model with all degree of suitability.

Keywords: Exact solutions, Einsteins field equations, Perfect fluid ball, Compact
star, General relativity.

1. Introduction
A compact stellar object is formed by an equilibrium state which is reached

after condensation and contraction of a massive gas cloud. At this state thermal
radiation pressure together with normal fluid pressure balances the gravitational
binding energy. Various studies are made for understanding the formation of com-
pact star, its physical properties and internal structure by the solution of Einstein’s
field equation. Therefore the static isotropic and anisotropic exact solution which
describes the compact star is caused to enthusiasts the Researchers to conduct the
work in the same field. The study of interior of massive fluid ball can be made by
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well behaved solution of Einstein’s field equation. These equations were solved by
Schwarzschild for the interior of the static compact stellar object. The first ever
two exact solution of Einstein field equation for a compact object in static equi-
librium was obtained by Schwarzschild [2] in 1916. The first solution corresponds
to the geometry of the space-time exterior to a static prefect fluid ball, while the
other solution describes the interior geometry of a fluid sphere of constant energy-
density. Tolman [3] has obtained five different types of exact solutions for static
cases. The III solution corresponds to the constant density solution obtained ear-
lier by Schwarzschild [2]. The V and VI solutions correspond to infinite density
and infinite pressure at the centre, hence not considered physically viable. Thus
only the IV and VII solutions of Tolman are of physical relevance. Despite the non
linear character of Einsteins field equations, various exact solutions for static and
spherically symmetric metric are available in the related literature.

The search for the exact solutions is of continuous interest to researcher. Buch-
dahl [4] proposed a famous bound on the mass radius ratio of relativistic fluid
spheres which is an important contribution in order to study the stability of the
fluid spheres. Delgaty-Lake [5] studied all the then existing solutions and estab-
lished that Adler [6], Heintzmann [7], Finch and Skea [8], etc. do not satisfy all
the well behaved conditions and also pointed out that only nine solutions are well
behaved; out of which seven in curvature coordinates (Tolman [3], Patvardhav
and Vaidya [9], Mehra [10], Kuchowicz [11], Matese and Whitman [12], Durgapals
two solutions [13] and only two solutions (Nariai [14], Goldman [15]) in isotropic
coordinates. Ivanov [16], Neeraj Pant [17], Maurya and Gupta [18], Pant et al.
([19],[20]) studied the existing well behaved solutions of Einstein field equations in
isotropic coordinates. Recently we have found some exact solutions of Einsteins
field equations given by Tewari [21], Tewari and Charan ([22]-[25]).

In this paper we present a new solution in spherically symmetric isotropic co-
ordinates which is well behaved. Keeping in view of generality of solution due
to Tewari and Charan [1], we present a special solution of the same and its de-
tailed study, in order to construct a realistic model of compact star. In our present
study the paper consists of seven sections. In section 2 Einstein’s field equations
in isotropic coordinates are given. Expressions of density, anisotropic pressures(
radial and transverse pressures), anisotropy constant and redshift are incorporated
in this section. Section 3 consists of boundary conditions for well behaved solu-
tions. A new class of solution of Einstein’s field equations in isotropic coordinates
is given in section 4. Section 5 stipulates the properties of this new class of solution
of Einstein’s field equations. In section 6 the matching conditions of interior metric
of the perfect fluid with the Schwarzschild exterior metric are given. Finally, some
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concluding remarks have been made in section 7.

2. Einstein’s Field Equation in anisotropic coordinates
The Einstein’s field equations of general relativity are

Rµν −
1

2
Rgµν = −8πG

c4
Tµν (1)

where Tµν , the energy momentum tensor for a perfect fluid ball is defined as

Tµν = (ρc2 + pr)uµuν − ptgµν + (pr − pt)xµxν (2)

where ρ is the proper density, pr and pt are pressures of the fluid in the direction
of uµ(radial pressure)and orthogonal to uµ (tangential pressure) respectively, uµ
time-like four-velocity vector, xµ is the unit space like vector in the direction of
radial vector and gµν metric tensor of space-time.

The interior space-time metric for spherically symmetric fluid distribution is
given by

ds2 = −B2{dr2 + r2(dθ2 + sin2θdφ2)}+ A2dt2 (3)

where A and B are functions of r only.
In view of the metric (3) and energy momentum tensor (2), the field equation

(1) gives
8πG

c4
pr =

1

B2

(B′2
B2

+
2B′

rB
+

2A′B′

AB
+

2A′

rA

)
(4)

8πG

c4
pt =

1

B2

(B′′
B
− B′2

B2
+
B′

rB
+
A′′

A
+
A′

rA

)
(5)

8πG

c2
ρ = − 1

B2

(2B′′

B
− B′2

B2
+

4B′

rB

)
(6)

8πG

c4
(pt − pr) = ∆(r) =

δ(r)

B2
(7)

where

δ(r) =
(A′′
A

+
B′′

B
− 2B′2

B2
− B′

rB
− 2A′B′

AB
− A′

rA

)
(8)

The gravitational redshift of massive spherically symmetric ball is

1 + Z = g
1
2
00 (9)
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which gives central (Z0) and surface (ZΣ) gravitational redshifts

Z0 =
c

A
− 1 (10)

and

ZΣ =
(

1 +
rB′

B

)−1

− 1 (11)

3. Boundary conditions for well behaved Solution
For well behaved nature of the solution in isotropic coordinates, the following

conditions should be satisfied (Bonnor-Vickers [26]):

(i) The solution should be free from geometrical and physical singularities. Met-
ric potentials A and B must be non-zero positive finite for free from geometrical
singularities while central pressure, central density, should be positive and finite or
ρ0 > 0 and p0 > 0 for free from physical singularities.

(ii) The solution should have maximum positive values of pressure and density at
the center and monotonically decreasing towards the surface of fluid object i.e.

(a) (
dpr
dr

)0 = 0 and (
d2pr
dr2

)0 < 0 such that the radial pressure gradient,
dpr
dr

is

negative for 0≤r≤rΣ.

(b) (
dpt
dr

)0 = 0 and (
d2pt
dr2

)0 < 0 such that the tangential pressure gradient,
dpt
dr

is

negative for 0≤r≤rΣ.

(c) (
dρ

dr
)0 = 0 and (

d2ρ

dr2
)0 < 0 such that the density gradient,

dρ

dr
is negative for

0≤r≤rΣ.

(iii) The radial pressure must be equal to the tangential pressure at the center i.e.
(pr)0 = (pt)0.

(iv) At boundary radial pressure, pr must vanish while tangential pressure, pt may
not vanish.

(v) The radial pressure, pr, tangential pressure, pt and density ρ should be positive.
(vi) Solution should have positive value of pressure-density ratio which must be less
than 1 (weak energy condition) and less than (strong energy condition) throughout
within the fluid object and monotonically decreasing as well. (Pant and Negi [27]).
(vii) The casualty condition must be satisfied for this velocity of sound should be

less than that of light throughout the model i.e.0 ≤
√

dpr
c2dρ

< 1 and 0 ≤
√

dpt
c2dρ

<

1. The velocity of sound should be monotonically decreasing towards the surface

and increasing with the increase of density i.e.
d

dr
(
dpr
dρ

) < 0 or (
d2pr
dρ2

) > 0 and
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d

dr
(
dpt
dρ

) < 0 or (
d2pt
dρ2

) > 0. In this context it is worth mentioning that the equa-

tion of state at ultra-high distribution has the property that the sound speed is
decreasing outwards. (Canuto and Lodenquai [28]).

(viii)The anisotropy factor ∆ should be zero at the center and increasing towards
the surface of fluid object.

(ix)For realistic matter, γ > 1 i.e. p
ρ
< dp

dρ
, everywhere within the ball. (Pant and

Maurya [29] )

(x) The red shift at the center z0 and at the boundary should be positive, finite
and monotonically decreasing in nature with the increase of r.

Under these conditions, we have to assume the one of the gravitational potential
component in such a way that the field equation (1) can be integrated and solution
should be well behaved.

4. New class of well behaved Solution
A class of solutions of (8) is obtained by Tewari and Charan [1] as follows

A0 = C4(1 + C3r
2)(1 + C1r

2)
n

l+1 (12)

B0 = C2(1 + C1r
2)

1
l+1 (13)

δ(r) = (2n−2)
(l+1)

4C3C1r2

(1+C3r2)(1+C1r2)
(14)

where n, l, C1, C2, C3 and C4 are constants and

n =
1

2

{
(l + 3)± (l2 + 10l + 17)

1
2

}
(15)

where n is real if l ≥ −5 + 2
√

2 or l ≤ −5− 2
√

2.
For different values of n or l above equations give a variety of solutions and they

are categorized as isotropic pressure and homogeneous density, isotropic pressure
and inhomogeneous density while some inhomogeneous density and anisotropic
pressure. In order to keep anisotropy in our mind we are here constructing a
specific model corresponding to n = −7

5
, and we have

A = C4(1 + C3r
2)(1 + C1r

2)
7
47 (16)

B = C2(1 + C1r
2)

−5
47 (17)

δ(r) = 96C3C1r2

47(1+C1r2)(1+C3r2)
(18)

The energy density, anisotropic pressures and anisotropic parameter of star are
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given by

8πG

c4
pr =

4C1

2209C2
2(1 + C1r2)

37
47

[94 + 49C1r
2 +

47C3(1 + C1r
2)(47 + 37C1r

2)

C1(1 + C3r2)
] (19)

8πG

c4
pt =

4C1

2209C2
2(1 + C1r2)

84
47

[94 + 49C1r
2 +

47C3(1 + C1r
2)(47 + 61C1r

2)

C1(1 + C3r2)
] (20)

8πG

c2
ρ =

20C1(141 + 42C1r
2)

2209C2
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84
47

(21)

∆(r) =
96C3C1r

2

47C2
2(1 + C1r2)

37
47 (1 + C3r2)

(22)

In view of equation (19) and (20) the rate of fall of pressures with radial distance
from the center p′r and p′t are given by

8πG
c4
p′r = 8r

103823C2
2 (1+C1r2)

37
47

[
−1175C2

1+490C3
1r

2

(1+C1r2)

+
470C1C3 − 2209C2

3 + (1749C2
1C3 − 2099C1C

2
3)r2 + 370C2

1C
2
3r

4

(1 + C3r2)2

]
(23)

8πG
c4
p′t = 4r

103823C2
2 (1+C1r2)

84
47

[
−5593C2

1−1813C3
1r

2

(1+C1r2)

+
35814C1C3 − 103823C2

3 + (11468C2
1C3 − 202758C1C

2
3)r2 + 123281C2

1C
2
3r

4

(1 + C3r2)2

]
(24)

In view of equation (21) the rate of fall of density with radial distance from the
center ρ′ is given by

8πG

c2
ρ′ = −1680C2

1r(235 + 37C1r
2)

103823C2
2(1 + C1r2)

131
47

(25)

5. Properties of new solution
The solution should be free from singularities i.e. central pressure, central

density, should be positive and finite. For this A and B must be positive or C4 ≥ 0
and C2 ≥ 0.
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The central pressure and density of star are given by

8πG

c4
(pr)0 =

4(2209C3 + 94C1)

2209C2
2

(26)

8πG

c4
(pt)0 =

4(2209C3 + 94C1)

2209C2
2

(27)

8πG

c2
ρ0 =

60C1

47C2
2

(28)

The central value of pressure and density is positive definite if 2209C3 + 94C1 > 0

and C1 > 0. For the values of C1 and C3 such that
2209C3 + 94C1

705C1

≤ 1 or
C3

C1

≤
656

2209
; the central value

p0

C2ρ0

≤ 1. At the center,

(p′r)0 = 0; (p′t)0 = 0 and (ρ′)0 = 0 (29)

8πG

c4
(p′′r)0 = −−8(25C2

1 − 10C1C3 + 43C2
3)

2209C2
2

(30)

and

8πG

c4
(p′′t )0 = −−4(119C2

1 − 762C1C3 + 2209C2
3)

2209C2
2

(31)

Equations (30) and (31) give negative value of (p′′r)0 and (p′′t )0 for all values of C1,
C2 and C3 which satisfy boundary conditions. Hence pressure is maximum at the
centre and monotonically decreasing.

At the center the value of ρ′′ is given by

8πG

c2
(ρ′′)0 = −8400C2

1

2209C2
2

(32)

which is always negative for all values of C1 and C2. Thus density is maximum at
center and is monotonically decreasing.

Square of the components of adiabatic sound speed at the center is given by

1

c2
(
dpr
dρ

)0 =
(25C2

1 − 10C1C3 + 47C2
3)

1050C2
1

(33)

and

1

c2
(
dpt
dρ

)0 =
(119C2

1 − 762C1C3 + 2209C2
3)

2100C2
1

(34)
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The casuality condition is obeyed at the center for all values of constant satisfying
the boundary conditions.

Further it is mentioned here that the boundary of the super dense star is es-

tablished only when C4 > 0 and C2 > 0,
−1− 2

√
482

205
<
C3

C1

<
−1 + 2

√
482

205
.

6. Matching Conditions of Boundary
Schwarzschild exterior solution in canonical coordinates is given as so obtained

are to be matched over the boundary with Schwarzschild exterior solution

ds2 = −
(

1− 2GM

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2) +
(

1− 2GM

c2r

)
c2dt2 (35)

where M is the mass of the ball determined by external observer and R is the radial
coordinate of the exterior region. Using the following transformation

r = R
(

1 +
GM

2c2R

)2

(36)

Eq.(35) can be transformed in isotropic form given as

ds2 = −
(

1 +
GM

2c2R

)4{
dR2 +R2(dθ2 + sin2 θdφ2)

}
+

(
1− GM

2c2R

)2

(
1 + GM

2c2R

)2 c
2dt2 (37)

The usual boundary conditions are that the first and second fundamental forms
are continuous over the boundary r = rΣ or equivalently R = RΣ. Therefore

C4(1 + C3r
2
Σ)(1 + C1r

2
Σ)

7
47 = c2

(2− Sp
2 + Sp

)
(38)

rΣ = RΣC2(1 + C1r
2
Σ)

−5
47 (39)

4C2(1 + C1r
2
Σ)

−5
47 = (2 + Sp)

2 (40)

(B′
B

+
1

r

)
rΣ
rΣ = (1− 2Sp)

1
2 (41)

(A′
A

)
rΣ
rΣ = Sp(1− 2Sp)

−1
2 (42)

where Sp = GM
c2RΣ

.
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In view of the above boundary conditions we get the values of the arbitrary
constants in terms of Schwarzschild parameter Sp .

C1 =
(1− 2Sp)

1
2 − 47

r2
Σ(37− (1− 2Sp)

1
2 )

(43)

C2 =
(2 + Sp)

2

4

{ 10

(1− 2Sp)
1
2 − 37

} 5
47

(44)

C3 =
7C1 −

47Sp(1−2Sp)
−1
2 (1+C1r2

Σ)

2rΣ

47Sp(1−2Sp)
−1
2 (1+C1r2)rΣ
2

− 47− 54C1r2

(45)

C4 =
c2
(

2−Sp

2+Sp

)
(1 + C3r2

Σ)(1 + C1r2
Σ)

7
47

(46)

The central redshift is

Z0 =
2Sp

2− Sp
(47)

The surface redshift is
ZΣ = (1− 2Sp)

−1
2 − 1 (48)

7. Conclusion
In the present article, we have obtained new anisotropic compact star model

using variable separable form of metric components. Our model satisfy all the
physical reality conditions. We matched the solution by joining the Schwarzschild
metric at the boundary of the star. The metric potentials are free from any singu-
larity at the centre, positive and finite inside the star. It has been observed that the
physical parameters pressures, density, and redshift are positive at the centre and
within the limit of realistic state equation and monotonically decreasing and the
causality condition is obeyed throughout the fluid ball. Thus, the solution is well
behaved for all values of Schwarzschild parameter Sp within the perfect fluid ball.
Our solution is useful to construct the models of compact star like Gravitational
lensing, Quark stars/Strange stars, Boson stars, Gravastars, Eternally Collapsing
Objects and various high energy astronomical objects.
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