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Abstract: The objective of this paper is to present a new class of exact solution
of the Einstein field equations for a spherically symmetric shear free isotropic fluid
collapsing under its own gravity and undergoing radial heat flow due to Tewari [1].
The interior metric fulfilled all the relevant physical and thermodynamic conditions
that matched with Vaidya exterior metric over the boundary. At the beginning,
the interior solutions represent a static configuration of perfect fluid which later on
gradually starts evolving into radiation collapse. Consequently we have obtained
the expressions of various physical and thermal parameters and found that they
are physically reasonable for a set of model parameters and there are a number of
such parameters for which the solution is well behaved. The final fate of our model
is formation of black hole.
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1. Introduction
The attractive character of gravitational collapse is the formation of a star from

nebulae, galaxies and cluster in astrophysics. The balance of any star is totally de-
pends on the balance of two incompatibility effects. The internal thermal pressure
of an element contracting the material of the star in the stellar interior and the
opposite gravitational force attracting the same towards the centre. When this
reaction end and no other source of pressure acts on this, this balance is broken
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and a massive star undergoes the continuous catastrophic contraction. Such a phe-
nomenon is known as gravitational collapse. The initiator of gravitational collapse
was astrophysicist Chandrasekhar [2]. Hence gravitational collapse of massive stars
under various conditions is one of the most interesting phenomenon in relativistic
astrophysics and it attracts the researchers also. Gravitational collapse transferred
into a black hole but several counter examples shown that naked singularity can
also be formed still no established theory can explain the formation of either black
hole or naked singularity (Joshi and Malafarina [3]). In order to understand this it
is must to form realistic model and to solve non-linear differential equation.

In 1916 Karl Schwarzschild [4] gave an exact solution to the Einstein field
equations for a spherically symmetric bounded matter distribution having a vacuum
exterior. Gravitational collapse was first taken by Oppenheimer and Snyder [5], in
which they studied the dust collapse according them singularity is neither locally
nor globally naked, i.e. the final fate of the dust collapses a black hole. In 1951,
Vaidya [6] published exact solution to the Einstein field equations describing the
metric corresponding to the exterior gravitational field of a radiating star. The
Santos [7] junction condition based on Vaidyas outgoing solution has given the way
for studying dissipative gravitational collapse. Herrera and Santos [8] and Mitra [9]
established the fact that gravitational collapse is a high energy dissipating energy
process which plays a dominant role in the formation and evolution of stars. The
dissipation of energy from collapsing fluid distribution is described in two limiting
cases. The first case describes the free streaming approximation while second one
is diffusion approximation. The prominent work in first case is due to Tewari and
he solved the Einstein’s field equations with a new approach and developed the
Quasar models Tewari [10]-[13]. While a number of realistic models in diffusion
approximation are due to de Oliveira et al. [14]; Bonnor et al. [15]; Banerjee et
al.[16]; Herrera et al.[17, 18]; Ivanov [19]; Sharif and Abbas [20]; Tewari [21]; Tewari
and Charan [22-25], Tewari et al.[26, 27].

In this paper we present a class of new solutions of Einsteins equations for shear-
free spherically symmetric non adiabatic collapsing fluid with radial heat flow. It
is presented with the reference of relevant conditions with separable metric. The
interior space time metric is match with Vaidyas exterior metric at the boundary.
The final fate of such models is a formation of black hole. The paper is organised as
follows: In sec. 2 the field equations and the junction conditions which match the
interior metric of the collapsing fluid with the exterior metric are given. In section
3 a new class of exact solutions of the field equations are presented. In section 4
a detailed study of a class of solutions for a collapsing radiating star is given and
finally in section 5 some concluding remarks have been made.
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2. The interior structure of fluid distribution
The Riemannian space time of radiating star will be separated by its boundary

into two distinct regions, the interior space time and the exterior space time for a
stellar model. These specific regions is give a detailed account in word by a odd
smooth time like three dimensional hyper surface

ds2
− = −A2(r, t)dt2 +B2(r, t){dr2 + r2(dθ2 + sin2 θdφ2)} (1)

The energy momentum tensor describe the physical content of the interior space
time

Tµν = (ε+ p)wµwν + pgµν + qµwν + qνwµ (2)

where ε is the energy density of the fluid, p the isotropic pressure, wµ is the four
velocity and qµ the radial heat flux vector. Assuming comoving coordinates, we
have wµ = δµ0 . The heat flow vector qµ is orthogonal to the velocity vector so that
qµwµ = 0 and takes the form qµ = qδµ1 .

The line element (1) corresponds to shear- free spherically symmetric fluid
(Glass [28]), as the shear tensor vanishes identically. The fluid collapse rate Θ = wµ;µ
of the fluid distribution (1) is given by

Θ =
3Ḃ

AB
(3)

Non-trivial Einsteins field equations in view of (1) and (2) are given by following
system of equations
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here and hereafter the primes and dots stand for differentiation with respect to r and
t respectively. The coupling constant in geometrized units is κ = 8π(i.e.G = c = 1).
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3. The exterior space time and the junction conditions
The exterior space-time is described by Vaidyas exterior metric [6] which rep-

resents an outgoing radial flow of radiation

ds2
+ = −

(
1− 2M(v)

R

)
dv2 − 2dRdv +R2(dθ2 + sin2 θdφ2) (8)

where v is the retarded time and M(v) is the exterior Vaidya mass.
The junction conditions for matching two line elements (1) and (8) continu-

ously across a spherically symmetric time-like hyper surface Σ are well known and
obtained by Santos [7]

(rB)Σ = RΣ(v) (9)

(pr)Σ = (qB)Σ (10)

mΣ(r, t) = M(v) =

{
r3BḂ2

2A2 − r2B′ − r3B′2

2B

}
Σ

(11)

where mΣ is the mass function calculated in the interior at r = rΣ (Cahill et al.
[29], Misner and Sharp [30]).

Some other characteristics of the model such as the surface luminosity and the
boundary redshift zΣ observed on Σ are

LΣ = κ
2
{r2B3q}Σ (12)

zΣ =
[
1 + rB′

B
+ rḂ

A

]−1

Σ
− 1 (13)

The total luminosity for an observer at rest at infinity is

L∞ = −dM
dv

=
LΣ

(1 + zΣ)2
(14)

4. Solution of the field equations
In order to solve the field equations we choose a particular form of the metric

coefficients given in (1) into functions of r and t coordinates as A(r, t) = A0(r)g(t)
and B(r, t) = B0(r)f(t).

In view of the above metric coordinates the Einstein’s field equations (6)-(9)
lead to the following system of equations
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ε0
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+
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where

ε0 = − 1

B2
0

(2B′′0
B0

− B′20
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0

+
4B′0
rB0

)
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here the quantities with the suffix 0 corresponds to the static star model with
metric components A0(r), B0(r).

In the absence of dissipative forces the equation (10), (p)Σ = (qB)Σ, reduces to
the condition [p0]Σ = 0 and yields at r = rΣ = RΣ

2f̈

f
+
ḟ 2

f 2
− 2ġḟ

gf
=

2αgḟ

f 2
(19)

where

α =
(A′0
B0

)
Σ

(20)

To solve the equation (19), by assuming g(t) = f(t) (Tewari [1]) obtained the
following solution

ḟ = −2α
√
f(1−

√
f) (21)

t = 1
α
ln(1−

√
f) (22)

We observed that the function f(t) decreases monotonically from the value f(t) = 1
at t = −∞ to f(t) = 0 at t = 0.

5. Parametric class of Solutions
The isotropy of pressure would give the equation

A′′0
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B′′0
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(
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where the quantities with the suffix 0 corresponds to the static star model metric
components A0(r), B0(r).

The new parametric class of solutions of equation (23) obtained by Tewari [1]
is

A0 = D2(1 + C1r
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1
2
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where n, l, C1, C2, D1 and D2 are constants and n is real if l ≥ −5 + 2
√

2 or
l ≤ −5− 2

√
2.

One can arrive at a number of solutions for different values of n from above
class of solutions. Already a number of solutions have been obtained with the help
of this class of solution.

6. Detailed study of specific model
In order to construct the new realistic model we assume n = −7/5 and, from

(24) and (25) we obtain,

A0 = D2(1 + C1r
2)

7
47 +D1(1 + C1r

2)
31
47 (27)

B0 = C2(1 + C1r
2)
−5
47 (28)

In view of (27) and (28) the equations (17) and (18) reduces in following expressions

ε0 =
20C1

2209C2
2(1 + C1r2)

84
87
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4C1
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23
47}
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The junction condition [p0]Σ = 0 gives

D2 = −25D1(1 + C1r
2
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23
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2
Σ)

(94 + 49C1r2
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(31)

We observed that ε0 > 0, p0 > 0,
p0

ε0
< 1, ε′0 < 0, p′0 < 0 at the centre are

satisfied with suitable choice of constants C1 > 0, C2 > 0, D2 > 0, D1 < 0 and

D2 > −
25D1

2
.

The total energy inside Σ for the static system

m0 =
10C1C2r

3
Σ(47 + 42C1r

2
Σ)

2209(1 + C1r2)
99
47

(32)

Now the explicit expressions for ε, p, q, and Θ become

ε =
ε0
f 2

+
12α2

A2
0
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√
f)2

f 3
(33)
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where
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We can see the physical parameters ε, p, q are finite, positive monotonically de-
creasing at any instant with respect to radial coordinate for 0 ≤ r ≤ rΣ . Initially
collapse is zero and it becomes infinite at final phase of the configuration.

The total energy entrapped inside Σ is given by
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[
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The luminosity and the red shift observed on Σ and luminosity observed by a
distant observer are given by
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The above expressions show that L∞ vanishes in the beginning whenf(t)→ 1 and
at the stage whenzΣ →∞.
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We obtain the black hole formation time as√
fBH =
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7. Temperature evaluation
The effective surface temperature observed by external observer can be calculate

similar as Tewari [1]
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where the constant δ in Photon is given by

δ =
π2k4

15~3
(45)

where k and ~ denoting respectively Boltzmann and Plank constants.
The temperature inside the star is given by Tewari [1]
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It follows that the surface temperature of the collapsing star tends to zero at the
beginning of the collapse [f → 1] and the stage of formation of black hole [zΣ →∞].

8. Conclusion
We here presented a new radiating fluid model collapsing in the influence of

its own gravity using Tewari solution [1] as seed solution. The interior fluid is
spherically symmetric shear-free isotropic and radiating away its energy in the
form of radial heat flow. Keeping in mind pressure isotropy a simple radiating
star model for n = −7

5
studied in detail. We observed that the function f(t)

decreases monotonically from the value f(t) = 1 at t = −∞ to f(t) = 0 at
t = 0. The model is physically and thermodynamically sound as it corresponds
to well-behaved nature for the fluid density, isotropic pressure and radiation flux
density throughout the fluid sphere. Initially the interior solutions represent a static
configuration of perfect fluid which then gradually starts evolving into radiating
collapse. The apparent luminosity as observed by the distant observer at rest at
infinity is zero in remote past at the instance when collapse begins and at the stage
when collapsing configuration reaches the horizon of the black hole. The surface
temperature and the temperature inside the star of the collapsing body is zero at
the beginning and become infinite at the final phase of the configuration. We have
a number of applications of our work i.e. one can construct models of Quasars,
Supernovae, Shock Waves, Black holes, Warm holes, Gravitational lensing, Quark
stars/Strange stars, Boson stars, Gravastars, Eternally Collapsing Objects and
various high energy astronomical objects.
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