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1. Introduction

In [8] Lucy Slater presented a list of 130 q-series identities including the 3
listed below that are the ones of numbers 18, 14 and 20 respectively with the first
two being the famous Rogers Ramanujan identities.

∞∑

n=0

qn
2

(q; q)n
=

∞∏

n=1

1

(1− q5n−1)(1− q5n−4)
(1.1)

∞∑

n=0

qn
2+n

(q; q)n
=

∞∏

n=1

1

(1− q5n−2)(1− q5n−3)
(1.2)

∞∑

n=0

qn
2

(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

∞∏

n=1

(1− q5n−2)(1− q5n−3)(1− q5n) (1.3)

where
(a; q)n = (1− a)(1− aq) . . . (1− aqn−1),
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n a nonnegative integer.

To describe an idea about how to look for a combinatorial interpretation for
identities of this type we use (1.1) as a prototypical example.

In [2] Andrews considers in as simple a manner as possible a two-variable
generalization f (q, t) that has the following properties:

(i) f(q, t) =
∞∑

n=0

Pn(q)t
n, where Pn(q) are polynomials.

(ii) lim
n→∞

Pn(q) =
∞∏

n=1

1

(1− q5n−1)(1− q5n−4)
.

(iii) f(q, t) satisfies a first-order nonhomogeneous q-difference equation.

By stating things in this generality no one could guess what to do next.
However, in practice f(q, t) is generally easily produced. A parameter t is inserted
into (1.1) in such a way that one essentially obtains the (n+ 1)th term from the
nth term by replacing t by tq. In this instance

f(q, t) =
∞∑

n=0

t2nqn
2

(1− t)(1− tq) . . . (1− tqn)
.

The factor (1− t) in the denominator is essential to guarantee (ii).

We now check that our three conditions have been verified. First

f(q, t) =
1

1− t
+

∞∑

n=1

t2nqn
2

(t; q)n+1

=
1

1− t
+

∞∑

n=1

t2n+2qn
2+2n+1

(1− t)(tq; q)n+1

=
1

1− t
+

t2q

1− t
f (q; tq)

or
(1− t)f (q, t) = 1 + t2qf (q, tq).

Thus (iii) is satisfied. Next, we note

f(q, t) =
∞∑

n=0

∞∑

m=0

t2nqn
2

tm
[
n+m
m

]
(by Andrews [1, p. 36, Theorem 3.3])

=
∞∑

n=0

tN
∑

0≤2n≤N

qn
2

[
N − n
n

]
. (1.4)
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Hence we have (i) since by (1.4)

PN (q) =
∑

0≤2n≤N

qn
2

[
N − n
n

]
. (1.5)

For (ii) we may use Abel’s lemma (Whittaker and Watson [10, p.57] or Andrews
[5, p. 190]):

lim
n→∞

Pn(q) = lim
t→1−

(1− t)f(q, t)

=
∞∑

n=0

qn
2

(q; q)n
=

∞∏

n=1

1

(1− q5n−1)(1− q5n−4)
.

A natural question at this point may be: So what? We started with (1.1)
and obtained f (q, t); however, we appear not to have anything new of any real
significance. We might, of course, attempt a justification by pointing out that
the polynomials Pn(q), in this case, were important in the treatment of regime I
of the hard hexagon model.

In this paper we are going to explore the combinatorics of Pn(q) obtained
from the f (q, t) associated with identity (1.3) which is

P0(q) = 1; P1(q) = 1 + q,

Pn(q) = (1− q2 + q2n−1)Pn−1(q) + q2Pn−2(q). (1.6)

We note that (1.6) is a generalization of the Fibonacci sequence since setting
q = 1 yields the Fibonacci sequence. It is important to say that this family of
polynomials given in (1.6) is quite different from the famous Schur-MacMahon
polynomials given by (1.5) which is also a generalization of the Fibonacci se-
quence. We note that f (q, t) is of interest for other values of t besides 1. In
particular,

f (q,−1) =
1

2

∞∑

n=0

qn
2

(−q; q)n
=

1

2
f0(q),

where f0(q) is one of Ramanujan’s fifth-order mock theta functions (cf. [9]).

Before starting our study of another Pn(q) from which we got a new com-
binatorial interpretation for the Fibonacci numbers we have to mention that by
analyzing these functions at other points, as mentioned above, one can give new
proofs for the identities in Slater’s list and also find new ones with the help of
Abel’s lemma, Bailey’s lemma and Jacobi’s triple product together with a sym-
bolic algebra package (cf. [7]).
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A fuller discussion of the combinatorics of this construction is given by An-
drews [2].

2. Some Definitions for our Proof

When dealing with the expression

(1 + x+ x2)n (2.1)

we call the coefficients of xj in the expanded form of (2.1) the trinomial coeffi-
cients.

It is easy to show that if

(1 + x+ x2)n =
n∑

j=−n

(
n

j

)

2

xj+n (2.2)

then
(
n

j

)

2

=
∑

h≥0

n!

h!(h+ j)!(n− j − 2h)!
(2.3)

=
∑

h≥0

(−1)h
(
n

h

)(
2n− 2h

n− j − h

)
(2.4)

and also (
n

j

)

2

=

(
n

−j

)

2

(2.5)

and (
n

j

)

2

=

(
n− 1

j − 1

)

2

+

(
n− 1

j

)

2

+

(
n− 1

j + 1

)

2

. (2.6)

The following expressions [6] are q-analogs of the trinomial coefficient in the
same way that the Gaussian polynomial is a q-analog of the binomial coefficient,
that is, the limit of each one of them when q approaches 1 is equal to the trinomial
coefficient given by (2.3) and (2.4).

T0(m,A, q) =
m∑

j=0

(−1)j
[
m
j

]

q2

[
2m− 2j
m−A− j

]
, (2.7)

T1(m,A, q) =
m∑

j=0

(−q)j
[
m
j

]

q2

[
2m− 2j
m−A− j

]
, (2.8)

T1(m,A, q) = T1(m− 1, A, q) + qm+AT0(m− 1, A+ 1, q)

+qm−AT0(m− 1, A− 1, q) (2.9)

T0(m,A, q) = T0(m− 1, A− 1, q) + qm+AT1(m− 1, A, q)

+q2m+2AT0(m− 1, A+ 1, q). (2.10)
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We need also [6] the identity:

T1(m,A, q)− q
m−AT0(m,A, q)− T1(m,A+ 1, q)

+qm+A+1T0(m,A+ 1, q) = 0. (2.11)

If we define

U(m,A, q) = T0(m,A, q) + T0(m,A+ 1, q) (2.12)

then the following two results [4, pp. 13-15] are true:

U(m,A, q) = (1 + q2m−1)U(m− 1, A, q) + qm−AT1(m− 1, A− 1, q)

+qm+A+1T1(m− 1, A+ 2, q) (2.13)

U(m,A, q) = (1 + q + q2m−1)U(m− 1, A, q)− qU(m− 2, A, q)

+q2m−2AT0(m− 2, A− 2, q)

+q2m+2A+2T0(m− 2, A+ 3, q). (2.14)

The following limiting value of our q-analog (2.12) is necessary:

lim
m→∞

U(m,A, q) =
(−q; q2)∞
(q2; q2)∞

[4, Eq. (4.16)]. (2.15)

3. The Fibonacci Numbers from a Sequence Pn(q)

We start by considering the function f(q, t) associated with Eq. (1.3) that
is

∞∑

n=0

qn
2

(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

∞∏

n=1

(1− q5n−2)(1− q5n−3)(1− q5n).

In [7] there is a list of functions f(q, t) associated with 74 of the 130 identities
given by Slater together with a conjecture of an explicit formula for Pn(q) in
terms of q-analogs of binomial or trinomial coefficients.

f (q, t) =
∞∑

n=0

tnqn
2

(t; q2)n+1(−tq2; q2)n
(3.1)

=
1

1− t
+

∞∑

n=1

tnqn
2

(t; q2)n+1(−tq2; q2)n

=
1

1− t
+

1

(1− t)(1 + tq2)

∞∑

n=1

tnqn
2

(tq2; q2)n(−tq4; q2)n−1

=
1

1− t
+

1

(1− t)(1 + tq2)

∞∑

n=0

tn+1qn
2+2n+1

(tq2; q2)n+1(−tq4; q2)n
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=
1

1− t
+

tq

(1− t)(1 + tq2)

∞∑

n=0

(tq2)nqn
2

(tq2; q2)n+1(−tq4; q2)n

=
1

1− t
+

tq

(1− t)(1 + tq2)
f(q, tq2).

From this we have

(1− t)(1 + tq2)f (q, t) = 1 + tq2 + tqf(q, tq2).

In order to obtain a recurrence relation from this functional equation we
make the following substitution:

f(q, t) =
∞∑

n=0

Pn(q)t
n.

By equating coefficients of the same power on both sides we get the recur-
rence

P0(q) = 1, P1(q) = 1 + q,

Pn(q) = (1− q2 + q2n−1)Pn−1(q) + q2Pn−2(q). (3.2)

In [7] Santos gave the following explicit formula as a conjecture for Pn(q).

C(n) =
∞∑

j=−∞

q10j
2+jU(n, 5j)−

∞∑

j=−∞

q10j
2+11j+3U(n, 5j + 2).

We note that having proved this conjecture we can get identity (1.3) by
taking the lim

n→∞
C(n):

∞∑

n=0

qn
2

(q4; q4)n
= lim

t→1−
(1− t)f(q, t) = lim

n→∞
C(n)

= lim
n→∞




∞∑

j=−∞

q10j
2+jU(n, 5j)−

∞∑

j=−∞

q10
2j+11j+3U((n, 5j + 2)





by (2.15)
=

(−q; q2)∞
(q2; q2)∞




∞∑

j=−∞

q10
2j+j −

∞∑

j=−∞

q10
2j+11j+3





=
(−q; q2)∞
(q2; q2)∞

∞∑

n=−∞

(−1)nq
5n
2
+n

2

=
(−q; q2)∞
(q2; q2)∞

∞∏

n=1

(1− q5n−2)(1− q5n−3)(1− q5n),
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where we have used Jacobi’s triple product in the last equality.

It is easy to see that when we replace q by 1 in (3.2) we get

P0(1) = 1 , P1(1) = 2 , Pn(1) = Pn−1(1) + Pn−2(1),

which is the Fibonacci sequence

F0 = 1, F2 = 2, Fn = Fn−1 + Fn−2, n ≥ 2.

Now from (3.3) we can get a new formula for the Fibonacci sequence by
taking the limq→1C(n) once we have proved that the conjecture is correct. This
is done in the next theorem.

Theorem 3.1. The recurrence

Pm = (1− q2 + q2m−1)Pm−1 + q2Pm−2

holds for the expression below which is given by (3.3):

C(m) =
∞∑

j=−∞

q10j
2+jU(m, 5j)−

∞∑

j=−∞

q10j
2+11j+3U(m, 5j + 2).

Proof. If (3.2) were true for U(m,A) the proof would be complete. But since
this is not the case we consider the following expression:

U(m,A)− (1− q2 + q2m−1)U(m− 1, A)− q2U(m− 2, A). (3.3)

Now, replacing here U(m,A) by its definition given in (2.12) together with
identity (2.13), we have

U(m,A)− (1 + q2m−1)U(m− 1, A) + q2U(m− 1, A)−

q2U(m− 2, A) = qm−AT1(m− 1, A− 1) + qm+A+1T1(m− 1, A+ 2) +

q2T0(m− 1, A) + q2T0(m− 1, A+ 1)− q2(T0(m− 2, A) + T0(m− 2, A+ 1)).

If, on the right-hand side of this last equation, we apply (2.9) on the 1st and
2nd terms and (2.10) on the 3rd and 4th terms, and by observing that before
applying (2.10) on the 3rd term we have replaced in (2.10) A by −A and used the
fact that T0(m,A, q) = T0(m,−A, q) and T1(m,−A, q) = T1(m,A, q), we have

qm−A(T1(m− 2, A− 1) + qm+A−2T0(m− 2, A) + qm−AT0(m− 2, A− 2)) +

qm+A+1(T1(m− 2, A+ 2) + qm+A+1T0(m− 2, A+ 3) + qm−A−3T0(m− 2, A+ 1)) +

q2(T0(m− 2, A+ 1) + qm−1−AT1(m− 2, A) + q2m−2A−2T0(m− 2, A− 1)) +

q2(T0(m− 2, A) + qm+AT1(m− 2, A+ 1) + q2m+2AT0(m− 2, A+ 2))−

q2T0(m− 2, A)− q2T0(m− 2, A+ 1).
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After two easy cancellations we have

qm−AT1(m− 2, A− 1) + q2m−2T0(m− 2, A) + q2m−2AT0(m− 2, A− 2) +

qm+A+1T1(m− 2, A+ 2) + q2m+2A+2T0(m− 2, A+ 3) + q2m−2T0(m− 2, A+ 1) +

qm−A+1T1(m− 2, A) + q2m−2AT0(m− 2, A− 1) +

qm+A+2T1(m− 2, A+ 1) + q2m+2A+2T0(m− 2, A+ 2).

Now, in order to complete our proof we have to show that this expression,
when replaced in (3.3), is identical to zero. After the substitution we have

∞∑

j=−∞

q10j
2−4j+mT1(m− 2, 5j − 1) +

∞∑

j=−∞

q10j
2+j+2m−2T0(m− 2, 5j) +

∞∑

j=−∞

q10j
2−9j+2mT0(m− 2, 5j − 2) +

∞∑

j=−∞

q10j
2+6j+m+1T1(m− 2, 5j + 2) +

∞∑

j=−∞

q10j
2+11j+2m+2T0(m− 2, 5j + 3) +

∞∑

j=−∞

q10j
2+j+2m−2T0(m− 2, 5j + 1) +

∞∑

j=−∞

q10j
2−4j+m+1T1(m− 2, 5j) +

∞∑

j=−∞

q10j
2−9j+2mT0(m− 2, 5j − 1) +

∞∑

j=−∞

q10j
2+6j+m+2T1(m− 2, 5j + 1) +

∞∑

j=−∞

q10j
2+11j+2m+2T0(m− 2, 5j + 2)−

∞∑

j=−∞

q10j
2+6j+m+1T1(m− 2, 5j + 1)−

∞∑

j=−∞

q10j
2+11j+2m+1T0(m− 2, 5j + 2)−

∞∑

j=−∞

q10j
2+j+2m−1T0(m− 2, 5j)−

∞∑

j=−∞

q10j
2+16j+m+6T1(m− 2, 5j + 4)−

∞∑

j=−∞

q10j
2+21j+2m+9T0(m− 2, 5j + 5)−

∞∑

j=−∞

q10j
2+11j+2m+1T0(m− 2, 5j + 3)−

∞∑

j=−∞

q10j
2+6j+m+2T1(m− 2, 5j + 2)−

∞∑

j=−∞

q10j
2+j+2m−1T0(m− 2, 5j + 1)−

∞∑

j=−∞

q10j
2+16j+m+7T1(m− 2, 5j + 3)−

∞∑

j=−∞

q10j
2+21j+2m+9T0(m− 2, 5j + 4).

The 1st, 2nd and 3rd sums are canceled by the 14th, 15th and 16th when
we replace j by j + 1 in the last three sums. Now, putting together the 4th with
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17th, the 10th with 12th, the 6th with 18th, and the 9th with 11th we have

(1− q)
∞∑

j=−∞

q10j
2+6j+m+1T1(m− 2, 5j + 2)

− (1− q)
∞∑

j=−∞

q10j
2+11j+2m+1T0(m− 2, 5j + 2)

+ (1− q)
∞∑

j=−∞

q10j
2+j+2m−2T0(m− 2, 5j + 1)

− (1− q)
∞∑

j=−∞

q10j
2+6j+m+1T1(m− 2, 5j + 1)

+
∞∑

j=−∞

q10j
2+11j+2m+2T0(m− 2, 5j + 3) +

∞∑

j=−∞

q10j
2−4j+m+1T1(m− 2, 5j)

−

∞∑

j=−∞

q10j
2+j+2m−1T0(m− 2, 5j)−

∞∑

j=−∞

q10j
2+16j+m+7T1(m− 2, 5j + 3)

+
∞∑

j=−∞

q10j
2−9j+2mT0(m− 2, 5j − 1)−

∞∑

j=−∞

q10j
2+21j+2m+9T0(m− 2, 5j + 4).

Now the 2nd plus the 3rd, the 5th plus the 8th, the 6th plus the 7th are,
respectively,

(1− q)
∞∑

j=−∞

q10j
2+6j+m+1(qm−3−5jT0(m− 2, 5j + 1)− qm+5jT0(m− 2, 5j + 2)),

−

∞∑

j=−∞

q10j
2+16j+m+7(T1(m− 2, 5j + 3)− qm−5j−5T0(m− 2, 5j + 3)),

∞∑

j=−∞

q10j
2−4j+m+1(T1(m− 2, 5j)− q5j+m−2T0(m− 2, 5j)).

Applying now (2.11) in all these expressions with A replaced by 5j + 1 in
the 1st, by 5j + 3 in the 2nd, by −5j in the 3rd, and with m replaced by m− 2
we have

(1− q)
∞∑

j=−∞

q10j
2+6j+m+1(T1(m− 2, 5j + 1)− T1(m− 2, 5j + 2))

+(1− q)
∞∑

j=−∞

q10j
2+6j+m+1T1(m− 2, 5j + 2)
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−(1− q)
∞∑

j=−∞

q10j
2+6j+m+1T1(m− 2, 5j + 1)

−

∞∑

j=−∞

q10j
2+16j+m+7(T1(m− 2, 5j + 4)− qm+5j+2T0(m− 2, 5j + 4))

+
∞∑

j=−∞

q10j
2−4j+m+1(T1(m− 2,−5j + 1)− qm−1−5jT0(m− 2,−5j + 1))

+
∞∑

j=−∞

q10j
2−9j+2mT0(m− 2, 5j − 1)−

∞∑

j=−∞

q10j
2+21j+2m+9T0(m− 2, 5j + 4).

The first line cancels the second and the third. From the last three lines we
are left only with

−

∞∑

j=−∞

q10j
2+16j+m+7T1(m− 2, 5j + 4) +

∞∑

j=−∞

q10j
2−4j+m+1T1(m− 2,−5j + 1),

which is equal to zero by replacing j by j + 1 in the second and using the fact
that T1(m,A, q) = T1(m,−A, q).

Knowing now that

Pn(q) =
∞∑

j=−∞

q10j
2+jU(n, 5j)−

∞∑

j=−∞

q10j
2+11j+3U(n, 5j + 2) (3.4)

we can use (2.12) and (2.7) in order to find a new formula for the Fibonacci
numbers by taking the limit in (3.5) when q approaches 1.

lim
q→1

Pn(q) =
∞∑

j=−∞

[(
n

5j

)

2

+

(
n

5j + 1

)

2

−

(
n

5j + 2

)

2

−

(
n

5j + 3

)

2

]
.

Pn(1) = Fn.

4. A New Combinatorial Interpretation for Fn

Definition 4.1. We say that a partition is “Frobenius even alternating” (FEA)
if the parity of parts on the top row reading from right to left alternates starting
with even for the entire top row.

Below we have the Ferrers graph for two partitions of 15 with the corre-
sponding Frobenius symbol and where only the first one is FEA.
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• • • • •

• • •

• • •

• •

•

•

←→

(
4 1 0
5 2 0

)

• • • •

• • • •

• • •

• •

•

•

←→

(
3 2 0
5 2 0

)

In this section we are going to prove that the coefficient of tN in the expansion
of f(q, t) given by (3.1), that is Pn(q) in (3.2), is the generating function for self-
conjugate FEA partitions with largest part ≤ N .

Let us take (3.1) and write it in the following form:

f(q, t) =
∞∑

n=0

Pn(q)t
n

=
∞∑

n=0

tnqn
2

(t; q2)n+1(−tq2; q2)n

=
∞∑

n=0

tnqn
2

(1− t)(tq2; q2)n(−tq2; q2)n

=
1

(1− t)

∞∑

n=0

tnqn
2

(t2q4; q4)n
.

It is easy to see that in the denominator

(t2q4; q4)n = (1− t2q4)(1− t2q8) . . . (1− t2q4j) . . . (1− t2q4n)

the exponent of q is a multiple of 4 and also of j where j is the position of that
factor in that product. So if one divide the exponent of q by 2 the resulting
number is always even and multiple of j. From this trivial observation we have

that in the expansion of
1

1− t2q4j
that is

1 + (t2q4j)1 + (t2q4j)2 + · · ·+ (t2q4j)i + · · ·
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the exponent of q when divided by 2j is always equal to the exponent of t that
is also even.

Now we can explain how to build a self-conjugate FEA partition from the
coefficient of tN in f(q, t).

The following example will make it clear. Let us take tnqn
2

/(t2q4; q4)n for
n = 3.

t3q9

(t2q4; q4)3
=

t3q9

(1− t2q4)(1− t2q8)(1− t2q12)

= t3q9(1 + t2q4 + t4q8 + t6q12 + · · ·)

·(1 + t2q8 + t4q16 + t6q24 + · · ·)

·(1 + t2q12 + t4q24 + t6q36 + · · ·). (4.1)

We start by drawing a 3× 3 square which is coming from q9. The exponent
of t which is 3 is the contribution of this square to the largest part of the partition
we are building.

• • •

• • •

• • •

Now, let us take the term t4q24 from the third factor in (4.1). We divide the
exponent of q, that is, 24 by 2 getting 12 and next divide it by 3 (it is coming
from the third factor) getting 4 that is the exponent of t.

Now we place those 12 points on the right of the square as a pile of width 4
(exponent of t) and height 3 (the position of the factor). The other 12 points are
placed on the symmetric position about the diagonal. The following figure shows
what we get.

• • • • • • •

• • • • • • •

• • • • • • •

• • •

• • •

• • •

• • •

Let us take now, the term t2q8 from the second factor. We divide the expo-
nent of q, which is 8, by 2 getting 4 and then by 2 (the position of the factor).
We place those 4 points as a pile of width 2 (exponent of t) and height 2 (the
position of the factor). The next figure shows the result.
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• • • • • • • • •

• • • • • • • • •

• • • • • • •

• • •

• • •

• • •

• • •

• •

• •

Taking the term t4q8 from the first factor we just divide the exponent of q,
which is 8, by 2 and by 1. We now place those 4 points in a pile of width 4 (expo-
nent of t) and high 1 (position of the factor) getting the following representation:

• • • • • • • • • • • • •

• • • • • • • • •

• • • • • • •

• • •

• • •

• • •

• • •

• •

• •

•

•

•

•

We observe that by placing these 49 points coming from

t3q9(t4q24)(t2q8)(t4q8) = t13q49

in this way we get a representation of a partition of 49 with largest part 13 that
is FEA and self-conjugate. It is

(
12 7 4
12 7 4

)

So, in general, the coefficient of tN in the expansion of

∞∑

n=0

tnqn
2

(t2q4; q4)n
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is the generating function for self-conjugate partitions FEA having largest part
equal to N . Considering the factor 1/(1− t) we may conclude that Pn(q), which
is the coefficient of tN in f(q, t), is the generating function for self-conjugate FEA
partitions with largest part ≤ N .

It is necessary to explain how to find, for a given self-conjugate FEA parti-
tion, the terms from which they have been generated. This is easy. The Durfee
square tell us the value of n and to find the factor we do the following: take the
height of the first pile on the right of the square and its width. The width is the
exponent of t, the height is the factor and the exponent of q is twice the height
times the width. Repeat this for the following piles.

Recalling that Pn(1) = Fn we have proved the following

Theorem 4.1. The total number of self-conjugate FEA partitions with largest
part ≤ N is equal to FN .
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