J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 1 (2021), pp. 115-124

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

β^{c} -CLOSURE OPERATOR IN FUZZY SETTING

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College) 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: Aug. 23, 2021 Accepted: Nov. 12, 2021 Published: Dec. 30, 2021)

Abstract: Fuzzy β -open set is introduced in [6]. Using this concept as a basic tool, in [2] we have introduced and studied fuzzy β^* -closure operator and fuzzy β^* -closed set. Here we introduce fuzzy β^c -closure operator and fuzzy β^c -closed set. This newly defined operator is coarser than fuzzy β -closure operator [6] and fuzzy β^* -closure operator. Also fuzzy β^c -closure operator is an idempotent operator. Then some mutual relationship of this operator with the operators defined in [2, 3, 4, 5, 6, 7, 8] are established. With the help of this operator a new type of fuzzy separation axiom is introduced. Lastly we characterize this operator via fuzzy net. **Keywords and Phrases:** Fuzzy β -open set, fuzzy preopen set, fuzzy β^c -closed set, fuzzy β^c -regular space, β^c -convergence of a fuzzy net.

2020 Mathematics Subject Classification: Primary 54A40 Secondary 03E72.

1. Introduction

Many mathematicians have engaged themselves to introduce and study different types of fuzzy closure-like operators in fuzzy setting. In this context we have to mention [2, 3, 4, 5, 7, 8]. Using fuzzy β -open set, here we introduce and study fuzzy β^c -closed set and show that for any fuzzy set, fuzzy β -closure is weaker than fuzzy β^c -closure of this set and for a fuzzy open set these two operators coincide.

2. Preliminaries

Throughout the paper, by (X, τ) or simply by X we mean a fuzzy topological space (fts, for short) in the sense of Chang [5]. A fuzzy set A is a function from a

non-empty set X into a closed interval I = [0, 1], i.e., $A \in I^X$ [11]. The support of a fuzzy set A in X will be denoted by suppA [11] and is defined by suppA = $\{x \in X : A(x) \neq 0\}$. A fuzzy point [10] with the singleton support $x \in X$ and the value t ($0 < t \leq 1$) at x will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 in X respectively. The complement of a fuzzy set A in X will be denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for all $x \in X$ [11]. For two fuzzy sets A and B in X, we write $A \leq B$ if and only if $A(x) \leq B(x)$, for each $x \in X$, and AqB means A is quasi-coincident (q-coincident, for short) with B if A(x) + B(x) > 1, for some $x \in X$ [10]. The negation of these two statements will be denoted by $A \not\leq B$ and $A \not A B$ respectively. clA and intA of a fuzzy set A in X respectively stand for the fuzzy closure [5] and fuzzy interior [5] of A in X. A fuzzy set A in X is called fuzzy regular open [1] (resp., fuzzy preopen [9], fuzzy β -open [6]) if A = intclA (resp., $A \leq intclA$, $A \leq clintclA$). The complement of a fuzzy preopen (resp., fuzzy β -open) set is called a fuzzy preclosed [9] (resp., fuzzy β -closed [6]) set. The smallest fuzzy preclosed (resp., fuzzy β -closed) set containing a fuzzy set A is called fuzzy preclosure [9] (resp., fuzzy β -closure [6]) of A and is denoted by pclA (resp., βclA). The collection of all fuzzy regular open (resp., fuzzy preopen, fuzzy β -open) sets in an fts X is denoted by FRO(X) (resp., FPO(X), $F\beta O(X)$ and that of fuzzy preclosed (resp., fuzzy β -closed) sets is denoted by FPC(X) (resp., $F\beta C(X)$).

3. Fuzzy β^c -Closure Operator: Some Properties

In this section we first introduce fuzzy β^c -closure operator which is coarser than fuzzy β -closure operator. Then we characterize this operator via fuzzy open set and show that this operator is distributed over union but not on intersection.

Definition 3.1. A fuzzy point x_t in an fts (X, τ) is called a fuzzy β^c -cluster point of a fuzzy set A in an fts X if clUqA for every $U \in F\beta O(X)$ with x_tqU .

The union of all fuzzy β^c -cluster points of A is called fuzzy β^c -closure of A, to be denoted by $[A]^c_{\beta}$. A is called fuzzy β^c -closed set if $A = [A]^c_{\beta}$ and the complement of a fuzzy β^c -closed set in an fts X is called fuzzy β^c -open set in X.

Note 3.2. It is clear from definition that for any $A \in I^X$, $\beta clA \leq [A]^c_{\beta}$. But the converse is not necessarily true, follows from the following example.

Example 3.3. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is an fts. Here every fuzzy set is fuzzy β -open as well as fuzzy β -closed. Consider the fuzzy set B defined by B(a) = B(b) = 0.45 and the fuzzy point $a_{0.5}$. Then $a_{0.5}qU \in F\beta O(X)$ with U(a) > 0.5, U(b) = 0. then $clU = 1_X qB \Rightarrow a_{0.5} \in [B]_{\beta}^c$. But $U \not AB$ where $U(a) = 0.51, U(b) = 0 \Rightarrow a_{0.5} \notin \beta clB$.

The following theorem shows that under which condition fuzzy β -closure and fuzzy β^c -closure operators coincide.

Theorem 3.4. For a fuzzy open set A in an fts X, $\beta clA = [A]^c_{\beta}$.

Proof. By Note 3.2, it suffices to show that $[A]^c_{\beta} \leq \beta c l A$ for every fuzzy open set A in X. Let $x_t \notin \beta clA$. Then there exists $V \in F\beta O(X)$, $x_t qV, V \not qA \Rightarrow V \leq 1_X \setminus A$ where $1_X \setminus A$ is fuzzy closed set in X. Therefore, $clV \leq cl(1_X \setminus A) = 1_X \setminus A \Rightarrow$ $clV \not A \Rightarrow x_t \notin [A]^c_{\beta}$. Hence the proof.

The next theorem characterizes fuzzy β^c -closure operator of a fuzzy set in an fts X.

Theorem 3.5. For any fuzzy set A in an fts (X, τ) , $[A]^{c}_{\beta} = \bigcap \{ [U]^{c}_{\beta} : U \text{ is fuzzy open set in } X \text{ with } A \leq U \}.$ **Proof.** Clearly L.H.S. \leq R.H.S.

If possible, let $x_t \in \text{R.H.S}$, but $x_t \notin \text{L.H.S}$. Then there exists $V \in F\beta O(X)$ with $x_t qV$ and $clV \not qA \Rightarrow A \leq 1_X \setminus clV(\in \tau)$. By hypothesis, $x_t \in [1_X \setminus clV]^c_{\beta}$. But as $clV \not a(1_X \setminus clV), x_t \notin [1_X \setminus clV]^c_{\beta}$, a contradiction.

Note 3.6. By Theorem 3.4 and Theorem 3.5, we conclude that $[A]^c_{\beta}$ is fuzzy β closed set in X for any $A \in I^X$.

Theorem 3.7. In an fts (X, τ) , the following statements are true :

(a) 0_X and 1_X are fuzzy β^c -closed sets in X,

(b) for any two fuzzy sets $A, B \in X, A \leq B \Rightarrow [A]^c_{\beta} \leq [B]^c_{\beta}$,

(c) for any two $A, B \in I^X$, $[A \bigcup B]^c_{\beta} = [A]^c_{\beta} \bigcup [B]^c_{\beta}$, (d) for any two $A, B \in I^X$, $[A \bigcap B]^c_{\beta} \leq [A]^c_{\beta} \bigcap [B]^c_{\beta}$, the equality does not hold, in general, follows from the next example,

(e) union of any two fuzzy β^c -closed sets in X is also so,

(f) intersection of any two fuzzy β^c -closed sets in X is also so.

Proof. (a) and (b) are obvious.

(c) By (b), we can write, $[A]^c_{\beta} \bigcup [B]^c_{\beta} \leq [A \bigcup B]^c_{\beta}$.

To prove the converse, let $x_t \in [A \bigcup B]^c_{\beta}$. Then for any $U \in F\beta O(X)$ with $x_t q U$, $clUq(A \mid B)$. Then there exists $y \in X$ such that $(clU)(y) + max\{A(y), B(y)\} >$ $1 \Rightarrow \text{either } (clU)(y) + A(y) > 1 \text{ or } (clU)(y) + B(y) > 1 \Rightarrow \text{either } clUqA \text{ or } clUqB \Rightarrow$ either $x_t \in [A]^c_{\beta}$ or $x_t \in [B]^c_{\beta} \Rightarrow x_t \in [A]^c \bigcup [B]^c_{\beta}$.

(d) Follows from (b).

(e) Follows from (c).

(f) From (d), we have $[A \cap B]^c_{\beta} \leq [A]^c_{\beta} \cap [B]^c_{\beta}$ for any two fuzzy sets $A, B \in X$. Conversely, let A, B be two fuzzy β^c -closed sets in X. Then $[A]^c_{\beta} = A, [B]^c_{\beta} = B$. Let $x_t \in [A]^c_{\beta} \cap [B]^c_{\beta} = A \cap B \leq [A \cap B]^c_{\beta} \Rightarrow [A]^c_{\beta} \cap [B]^c_{\beta} \leq [A \cap B]^c_{\beta}$.

Example 3.8. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = 0.3, B(b) = 0.5. Then (X, τ) is an fts. Here $F\beta O(X) = \{0_X, 1_X, U, V, W\}$ where $U \ge A, 0.3 \le V(a) \le 0.7, 0.4 < V(b) \le 0.5, W \le 1_X \setminus A$. Consider two fuzzy sets C and D defined by C(a) = 0.4, C(b) = 0.1, D(a) = 0.1, D(b) = 0.55 and the fuzzy point $a_{0.6}$. We claim that $a_{0.6} \in [C]_s^c \cap [D]_s^c$, but $a_{0.6} \notin [C \cap D]_s^c$. The fuzzy β -open sets q-coincident with $a_{0.6}$ are of the form U, V_1, V_2, V_3 where $0.4 < V_1(a) \le 0.5, 0.4 < V_1(b) \le 0.5, V_2(a) > 0.5, V_2(b) \le 0.5, V_3(a) > 0.4, V_3(b) > 0.5$. Then $clU = clV_3 = 1_X$ and so $clU = clV_3qC$ and $clU = clV_3qD$. Also $clV_1 = clV_2 = 1_X \setminus B$ and so $clV_1 = clV_2qC$ and $clV_1 = clV_2qD$. As a result $a_{0.6} \in [C]_{\beta}^c \cap [D]_{\beta}^c$. Let $E = C \cap D$. Then E(a) = E(b) = 0.1. Then $clV_1 = (1_X \setminus B)$ $AE \Rightarrow a_{0.6} \notin [E]_{\beta}^c$.

Note 3.9. So we can conclude that fuzzy β^c -open sets in an fts (X, τ) form a fuzzy topology τ_{β^c} (say) which is coarser than fuzzy topology τ of (X, τ) .

Result 3.10. We conclude that $x_t \in [y_{t'}]^c_{\beta}$ does not imply $y_{t'} \in [x_t]^c_{\beta}$ where $x_t, y_{t'}$ $(0 < t, t' \leq 1)$ are fuzzy points in X as shown from the following example.

Example 3.11. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.2, B(a) = 0.7, B(b) = 0.2. Then (X, τ) is an fts. Here $F\beta O(X) = \{0_X, 1_X, U\}$ where $U \not\leq 1_X \setminus B$. Now consider two fuzzy points $a_{0.2}$ and $b_{0.61}$. We claim that $a_{0.2} \in [b_{0.61}]^c_{\beta}$, but $b_{0.61} \notin [a_{0.2}]^c_{\beta}$. Now any fuzzy β -open set q-coincident with $a_{0.2}$ is of the form U_1 where $U_1(a) > 0.8, U_1(b) \ge 0$. So $clU_1 = 1_X qb_{0.61} \Rightarrow a_{0.2} \in [b_{0.61}]^c_{\beta}$. Now $b_{0.61}qU_2 \in F\beta O(X)$ where $U_2(a) = 0.31, U_2(b) = 0.4$, but $clU_2 = (1_X \setminus A)$ $\notaa_{0.2} \Rightarrow b_{0.61} \notin [a_{0.2}]^c_{\beta}$.

The next theorem shows that fuzzy β^c -closure operator is an idempotent operator.

Theorem 3.12. For any fuzzy set A in an fts (X, τ) , $[A]^c_{\beta} = [[A]^c_{\beta}]^c_{\beta}$.

Proof. we first show that $A \subseteq [A]^c_{\beta}$. Let $x_t \in A$ be arbitrary. If possible, let $x_t \notin [A]^c_{\beta}$. Then there exists $U \in F\beta O(X)$ with $x_t q U$, $clU \not qA \Rightarrow A \leq 1_X \setminus clU$. Since $x_t \in A$, $x_t \in 1_X \setminus clU \Rightarrow 1 - (clU)(x) \geq t \Rightarrow x_t \not qclU$ which contradicts the fact that $x_t q U$. So $A \subseteq [A]^c_{\beta}$. Then by Theorem 3.7(b), $[A]^c_{\beta} \subseteq [[A]^c_{\beta}]^c_{\beta}....(1)$. Conversely, let $x_t \in [[A]^c_{\beta}]^c_{\beta}$. We have to show that $x_t \in [A]^c_{\beta}$. Let $U \in F\beta O(X)$ with $x_t q U$. By hypothesis, clUqB where $B = [A]^c_{\beta}$. Then there exists $y \in X$ such that (clU)(y) + B(y) > 1. Let B(y) = k. Then $y_k \in B = [A]^c_{\beta}$ and $y_k q clU$. Since $U \in F\beta O(X) \Rightarrow clU \in F\beta O(X)$, then for $y_k \in [A]^c_{\beta}$, we have $cl(clU) = clUqA \Rightarrow x_t \in [A]^c_{\beta} \Rightarrow [[A]^c_{\beta}]^c_{\beta} \subseteq [A]^c_{\beta} \ldots (2)$. Combining (1) and (2), we have $[A]^c_{\beta} = [[A]^c_{\beta}]^c_{\beta}$.

4. Mutual Relationship and Fuzzy β^c -Regular Space

In this section we first recall several types of fuzzy closure-like operators from [2, 3, 4, 7, 8] and then establish the mutual relationship between these closure operators with fuzzy β^c -closure operator. Next we introduce a new separation axiom in which fuzzy β -closure operator and fuzzy β^c -closure operator coincide.

Definition 4.1. A fuzzy point x_t in an fts (X, τ) is called fuzzy p^* -cluster point [3] (resp., fuzzy β^* -cluster point [2]) of a fuzzy set A in X if for every $U \in FPO(X)$ (resp., $U \in F\beta O(X)$) with $x_t qU$, pclUqA (resp., $\beta clUqA$).

The union of all fuzzy p^* -cluster (resp., fuzzy β^* -cluster) points of a fuzzy set A is called fuzzy p^* -closure [4] (resp., fuzzy β^* -closure [2]) of A, denoted by $[A]_p$ (resp., $[A]_\beta$).

Definition 4.2. A fuzzy point x_t in an fts (X, τ) is called a fuzzy θ -cluster point [8] (resp., fuzzy δ -cluster point [7], fuzzy δ^* -cluster point [4]) of a fuzzy set A in X if clUqA (resp., UqA, clUqA) for every fuzzy open (resp., fuzzy regular open, fuzzy regular open) set U in X with x_tqU .

The union of all fuzzy θ -cluster (resp., fuzzy δ -cluster, fuzzy δ^* -cluster) points of a fuzzy set A in an fts X is called fuzzy θ -closure [8] (resp., fuzzy δ -closure [7], fuzzy δ^* -closure [4]) of A, denoted by $[A]_{\theta}$ (resp., $[A]_{\delta}$, $[A]_{\delta^*}$).

Note 4.3. It is clear from above discussion that for any fuzzy set A in an fts (X, τ) ,

(i) $[A]_{\beta} \subseteq [A]_{\beta}^{c} \subseteq [A]_{\theta}, [A]_{\delta^{*}}$. But the reverse implications are not true, in general, follow from the following examples.

(ii) $[A]^{c}_{\beta}$ is an independent concept of $[A]_{p}$, $[A]_{\delta}$, clA follow from the following examples.

Example 4.4. $x_t \in [A]^c_{\beta}$, but $x_t \notin [A]_{\beta}, [A]_p, [A]_{\delta*}$

Consider Example 3.3. Here $\beta clU = U/qB \Rightarrow a_{0.5} \notin [B]_{\beta}$. Now $FPO(X) = \{0_X, 1_X, W, T\}$ where $W \leq A, T \not\leq 1_X \setminus A$. Now consider the fuzzy set S defined by S(a) = 0.51, S(b) = 0. Then $a_{0.5}qS \in FPO(X)$. But $pclS = S/qB \Rightarrow a_{0.5} \notin [B]_p$. Again consider the fuzzy set C defined by C(a) = C(b) = 0.3 and the fuzzy point $b_{0.5}$. We claim that $b_{0.5} \in [C]_{\delta*}$, but $b_{0.5} \notin [C]_{\beta}^c$. As $1_X \in FRO(X)$ only with $b_{0.5}q1_X$, clearly $b_{0.5} \in [C]_{\delta*}$. Now $b_{0.5}qS \in F\beta O(X)$ where S(a) = 0.5, S(b) = 0.51. But $clS = (1_X \setminus A)$ which is not q-coincident with $C \Rightarrow b_{0.5} \notin [C]_{\beta}^c$.

Example 4.5. $x_t \in [A]_{\theta}, [A]_{\delta}, [A]_p, clA$, but $x_t \notin [A]_{\beta}^c$ Let $X = \{a, b\}, \tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.2, B(a) = 0.7, B(b) = 0.2. Then (X, τ) is an fts. Here $F\beta O(X) = \{0_X, 1_X, U\}$ where $U \nleq 1_X \setminus B$. Consider the fuzzy set C defined by C(a) = C(b) = 0.2 and the fuzzy point $b_{0.61}$. We claim that $b_{0.61} \in clC, [C]_{\theta}, [C]_{\delta}$, but $b_{0.61} \notin [C]_{\beta}^c$. Now $clC = 1_X \setminus B \ni b_{.061}$. Again 1_X is the only fuzzy open (resp., fuzzy regular open) set in X with $b_{0.61}q1_X$ and so $b_{0.61} \in [C]_{\theta}$ (resp., $b_{0.61} \in [C]_{\delta}$). Now $b_{0.61}qV \in F\beta O(X)$ where V(a) = 0.31, V(b) = 0.4. But $clV = (1_X \setminus A)$ $/qC \Rightarrow b_{0.61} \notin [C]_{\beta}^c$. Again $FPO(X) = \{0_X, 1_X, S, T\}$ where $0.3 < S(a) \leq 0.5, S(b) \leq 0.2, T \not\leq 1_X \setminus A$. So $FPC(X) = \{0_X, 1_X, 1_X \setminus S, 1_X \setminus T\}$ where $0.5 \leq (1_X \setminus S)(a) < 0.7, (1_X \setminus S)(b) \geq 0.8, 1_X \setminus T \not\geq A$. Now $b_{0.61}qT_1 \in FPO(X)$ with $T_1(a) > 0.5, T_1(b) > 0.39$. Then $pclT = S_1$ or 1_X according as $S_1(a) > 0.5, S_1(b) = 0.8$ and so pclTqD where $D(a) = 0.5, D(b) = 0 \Rightarrow b_{0.61} \in [D]_p$. But as $clV = (1_X \setminus A) /qD$, we write $b_{0.61} \notin [D]_{\beta}^c$.

Example 4.6. $x_t \in [A]^c_{\beta}$, but $x_t \notin clA, [A]_p, [A]_{\delta}$

Consider example 3.3. Consider the fuzzy set B defined by B(a) = 0.4, B(b) = 0.5and the fuzzy point $a_{0.6}$. Here $FRO(X) = \tau$. Here $a_{0.6}qA \in FRO(X)$, but A $\not AB \Rightarrow a_{0.6} \notin [B]_{\delta}$. Here every fuzzy set is fuzzy β -open set in X. Now $a_{0.6}qU$ where $U(a) > 0.4, U(b) \ge 0$. Then $clU = (1_X \setminus A)or1_X$ and so $clUqB \Rightarrow a_{0.6} \in [B]_{\beta}^c$. Now $a_{0.6}qV \in FPO(X)$ where V(a) = 0.6, V(b) = 0. Then $pclV = V \not AB \Rightarrow a_{0.6} \notin [B]_p$. Also $clB = 1_X \setminus A \not \supseteq a_{0.6}$.

Let us now introduce the following separation axiom.

Definition 4.7. An fts (X, τ) is called fuzzy β^c -regular space if for each fuzzy point x_t and each fuzzy β -open set U in X with $x_t q U$, then there exists $V \in \tau$ such that $x_t q V \leq c l V \leq U$.

Theorem 4.8. For an fts (X, τ) , the following statements are equivalent :

(a) X is fuzzy β^c -regular space, (b) for any $A \in I^X$, $\beta clA = [A]^c_{\beta}$,

(c) for each fuzzy point x_t and each $U \in F\beta C(X)$ with $x_t \notin U$, there exists $V \in \tau$ such that $x_t \notin clV$ and $U \leq V$,

(d) for each fuzzy point x_t and each $U \in F\beta C(X)$ with $x_t \notin U$, there exist $V, W \in \tau$ such that $x_t qV, U \leq W$ and $V \notin W$,

(e) for any $A \in I^X$ and any $U \in F\beta C(X)$ with $A \not\leq U$, there exist $V, W \in \tau$ such that $AqV, U \leq W$ and $V \not qW$,

(f) for any $A \in I^X$ and any $U \in F\beta O(X)$ with AqU, there exists $V \in \tau$ such that $AqV \leq clV \leq U$.

Proof. (a) \Rightarrow (b) By Note 3.2, it suffices to show that $[A]^c_{\beta} \subseteq sclA$, for any $A \in I^X$. Let $x_t \in [A]^c_{\beta}$ be arbitrary and $V \in F\beta O(X)$ with $x_t qV$. By (a), there exists $U \in \tau$ such that $x_t qU \leq clU \leq V$. Since $U \in \tau \Rightarrow U \in F\beta O(X)$, by hypothesis, $clUqA \Rightarrow VqA \Rightarrow x_t \in \beta clA \Rightarrow [A]^c_{\beta} \subseteq \beta clA$.

(b) \Rightarrow (a) Let x_t be a fuzzy point in X and $U \in F\beta O(X)$ with $x_t q U$. Then

 $U(x) + t > 1 \Rightarrow x_t \notin 1_X \setminus U(\in F\beta C(X)) = \beta cl(1_X \setminus U) = [1_X \setminus U]^c_{\beta}$ (by (b)). Then there exists $V \in F\beta O(X)$ with $x_t qV$, $clV \not q(1_X \setminus U) \Rightarrow clV \leq U$. Therefore, $x_t qV \leq clV \leq U \Rightarrow X$ is fuzzy β^c -regular space.

(a) \Rightarrow (c) Let x_t be a fuzzy point in X and $U \in F\beta C(X)$ with $x_t \notin U$. Then $x_tq(1_X \setminus U) \in F\beta O(X)$. By (a), there exists $V \in \tau$ such that $x_tqV \leq clV \leq 1_X \setminus U$. Therefore, $U \leq 1_X \setminus clV$ (= W, say). Then $W \in \tau$. Now $x_tqV = intV \Rightarrow x_tqintV \leq V \leq intclV \Rightarrow x_tq(intclV) \Rightarrow (intclV)(x) + t > 1 \Rightarrow 1 - (intclV)(x) < t \Rightarrow x_t \notin 1_X \setminus intclV = cl(1_X \setminus clV) = clW$.

(c) \Rightarrow (d) Let x_t be a fuzzy point in X and $U \in F\beta C(X)$ with $x_t \notin U$. By (c), there exists $V \in \tau$ such that $U \leq V$ and $x_t \notin clV \Rightarrow$ there exists $W \in \tau$ such that $x_t qW$, $W \not qV$.

(d) \Rightarrow (e) Let $A \in I^X$ and $U \in F\beta C(X)$ with $A \not\leq U$. Then there exists $x \in X$ such that A(x) > U(x). Let A(x) = t. Then $x_t \notin U$. By (d), there exist $V, W \in \tau$ such that $x_t q V, U \leq W$ and V / q W. Again $V(x) + t > 1 \Rightarrow V(x) + A(x) > 1 - t + t = 1 \Rightarrow Aq V$.

(e) \Rightarrow (f) Let $A \in I^X$ and $U \in F\beta O(X)$ with AqU. Then $A \not\leq 1_X \setminus U \in F\beta C(X)$. By (e), there exist $V, W \in \tau$ such that $A \leq V, 1_X \setminus U \leq W$ and $V \not qW \Rightarrow V \leq 1_X \setminus W \in \tau^c \Rightarrow clV \leq cl(1_X \setminus W) = 1_X \setminus W \leq U$. Therefore, $A \leq V \leq clV \leq U$. (f) \Rightarrow (a) Obvious.

Corollary 4.9. An fts (X, τ) is fuzzy β^c -regular if and only if fuzzy β -closed set in X is fuzzy β^c -closed set in X.

Proof. Let (X, τ) be fuzzy β^c -regular space and $A \in F\beta C(X)$. Then by Theorem 4.8 (a) \Rightarrow (b), $A = \beta clA = [A]^c_{\beta} \Rightarrow A$ is fuzzy β^c -closed set in X.

Conversely, let $A = [A]^c_{\beta}$ for any $A \in F\beta C(X)$. Let $B \in I^X$. Then $\beta clB \in F\beta C(X)$ and so by hypothesis, $\beta clB = [\beta clB]^c_{\beta}$. Then $[B]^c_{\beta} \leq [\beta clB]^c_{\beta} = \beta clB$. By Note 3.2, $\beta clB \leq [B]^c_{\beta}$. Combining these two, we get $[B]^c_{\beta} = \beta clB$ for any $B \in I^X$. Then by Theorem 4.8 (b) \Rightarrow (a), X is fuzzy β^c -regular space.

5. Fuzzy β^c -Closure Operator : More characterizations Via Fuzzy Net

In this section we first introduce fuzzy β^c -cluster point and fuzzy β^c -convergence of a fuzzy net and then fuzzy β^c -closure operator of a fuzzy set is characterized in terms of these concepts.

Definition 5.1. A fuzzy point x_t in an fts (X, τ) is called a fuzzy β^c -cluster point of a fuzzy net $\{S_t : n \in (D, \geq)\}$ if for every fuzzy β -open set U in X with $x_t q U$ and for any $n \in D$, there exists $m \in D$ with $m \geq n$ such that $S_m qclU$.

Definition 5.2. A fuzzy net $\{S_n : n \in (D, \geq)\}$ in an fts (X, τ) is said to β^c converge to a fuzzy point x_t if for every fuzzy β -open set U in X, x_tqU , there exists $m \in D$ such that S_nqclU , for all $n \geq m$ $(n \in D)$. This is denoted by $S_n \overrightarrow{\beta^c} x_t$.

Theorem 5.3. A fuzzy point x_t is a fuzzy β^c -cluster point of a fuzzy net $\{S_n : n \in (D, \geq)\}$ in an fts (X, τ) iff there exists a fuzzy subset of $\{S_n : n \in (D, \geq)\}$ which β^c -converges to x_t .

Proof. Let x_t be a fuzzy β^c -cluster point of the fuzzy net $\{S_n : n \in (D, \geq)\}$. Let $C(Q_{x_t})$ denote the set of fuzzy closures of all fuzzy β -open sets of X q-coincident with x_t . Then for any $A \in C(Q_{x_t})$, there exits $n \in D$ such that S_nqA . Let E denote the set of all ordered pairs (n, A) such that $n \in D$, $A \in C(Q_{x_t})$ and S_nqA . Then (E, \gg) is a directed set, where $(m, A) \gg (n, B)$ $((m, A), (n, B) \in E)$ iff $m \geq n$ in D and $A \leq B$. Then $T : (E, \gg) \to (X, \tau)$ given by $T(m, A) = S_m$ is clearly a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$. We claim that $T\beta^c x_t$. Let V be any fuzzy β -open set in X with x_tqV . Then there exists $n \in D$ such that $(n, clV) \in E$ and so S_nqclV . Now for any $(m, A) \gg (n, clV)$, $T(m, A) = S_mqA \leq clV \Rightarrow T(m, A)qclV$. Consequently, $T\beta^c x_t$.

Conversely, let x_t be not a fuzzy β^c -cluster point of the fuzzy net $\{S_n : n \in (D, \geq)\}$. Then there exists $U \in F\beta O(X)$ with $x_t q U$ and an $n \in D$ such that $S_m \not Acl U$, for all $m \geq n$. Then clearly no fuzzy subnet of the net $\{S_n : n \in (D, \geq)\}$ can β^c -converge to x_t .

Theorem 5.4. Let A be a fuzzy set in an fts (X, τ) . A fuzzy point $x_t \in [A]^c_\beta$ iff a fuzzy net $\{S_n : n \in (D, \geq)\}$ in A, which β^c -converges to x_t .

Proof. Let $x_t \in [A]_{\beta}^c$. Then for any $U \in F\beta O(X)$ with x_tqU , clUqA, i.e., there exists $y^U \in suppA$ and a real number s_U with $0 < s_U \leq A(y^U)$ such that the fuzzy point $y_{s_U}^U$ with support y^U and the value s_U belong to A and $y_{s_U}^UqclU$. We choose and fix one such $y_{s_U}^U$ for each U. Let \mathcal{D} denote the set of all fuzzy β -open set in X q-coincident with x_t . Then (\mathcal{D}, \succeq) is a directed set under inclusion relation, i.e., $B, C \in \mathcal{D}, B \succeq C$ iff $B \leq C$. Then $\{y_{s_U}^U \in A : y_{s_U}^UqclU, U \in \mathcal{D}\}$ is a fuzzy net in A such that it β^c -converges to x_t . Indeed, for any fuzzy β -open set U in X with x_tqU , if $V \in \mathcal{D}$ and $V \succeq U$ (i.e., $V \leq U$) then $y_{s_V}^VqclV \leq clU \Rightarrow y_{s_V}^VqclU$.

Conversely, let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in A such that $S_n \overrightarrow{\beta^c} x_t$. Then for any $U \in F\beta O(X)$ with $x_t q U$, there exists $m \in D$ such that $n \geq m \Rightarrow S_n q c l U \Rightarrow$ Aqcl U (since $S_n \in A$). Hence $x_t \in [A]^c_{\beta}$.

Remark 5.5. It is clear that an improved version of the converse of the last theorem can be written as " $x_t \in [A]^c_{\beta}$ if there exists a fuzzy net in A with x_t as a fuzzy β^c -cluster point".

References

[1] Azad, K. K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.

- [2] Bhattacharyya, Anjana, β^* -closure operator in fuzzy setting, The Journal of Fuzzy Mathematics, 22 No. 1 (2014), 203-212.
- [3] Bhattacharyya, Anjana, p^{*}-closure operator and p^{*}-regularity in fuzzy setting, Mathematica Moravica, 19, No. 1 (2015), 131-139.
- [4] Bhattacharyya, Anjana, δ^* -closure operator in fuzzy setting, (Communicated).
- [5] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [6] Fath Alla, M. A., On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt (1984).
- [7] Ganguly, S. and Saha, S., A note on δ -continuity and δ -connected sets in fuzzy set theory, Simon Stevin, 62 (1988), 127-141.
- [8] Mukherjee, M. N. and Sinha, S. P., Fuzzy θ-closure operator on fuzzy topological spaces, Internat. J. Math. and Math. Sci., 14 No. 2 (1991), 309-314.
- [9] Nanda, S., Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, 42 (1991), 259-262.
- [10] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Jour. Math. Anal. Appl., 76 (1980), 571 - 599.
- [11] Zadeh, L. A., Fuzzy Sets, Inform. Control, 8 (1965), 338-353.