J. of Ramanujan Society of Math. and Math. Sc. Vol.6, No.1 (2017), pp. 53-62

HIERARCHIES OF PALINDROMIC SEQUENCES IN THE SYMMETRIC GROUP S_n

K. Srinivasa Rao and Pankaj Pundir*

Visiting Professor, Indian Institute of Information Technology, Chittoor, Andhra Pradesh, 517588, INDIA & Senior Professor (Retd.), Institute of Mathematical Sciences, Taramani, Chennai-600113, India E-mail: ksrao18@gmail.com

> *Indian Institute of Information Technology, Chittoor, Andhra Pradesh, 517588, INDIA E-mail: pundir.pankaj25@gmail.com

Dedicated to Prof. K. Srinivasa Rao on his 75th Birth Anniversary

Abstract: A new property of the Symmetric group, S_n , arises when each element is assigned a unique place value, which enables the ordering of the elements (numerically). It is shown that the differences between successive elements of this ordered, place-value assigned symmetric group S_n , give rise to a palindromic sequence $(\mathcal{P}_k)_{1\leq k\leq n!-1}^{\beta}$. We define the family of palindromic sequences, associated to S_n . Sieving out a given number at a time in the maximal palindromic sequence of the group, S_n , of length n! - 1, results in a hierarchy of palindromic sequences, ending with a single element, which will be the central element of $(\mathcal{P}_k)_{1\leq k\leq n!-1}^{\beta}$. Consequences of the concept of place value ordering of the elements of S_n , are presented in this article.

1. Introduction

Symmetric groups have been extensively studied in the field of abstract Algebra. A symmetric group is the set of all the permutations of the indices $\{1, 2, ..., n\}$, denoted by S_n . As the number of permutations of indices $\{1, 2, ..., n\}$ are n!, S_n is a finite group of order n!.

Definition 1. Let < be a lexicographic ordering on the elements of S_n . Consider the two permutations of S_n , $\sigma = (a_1 \ a_2 \ \cdots \ a_n)$ and $\pi = (b_1 \ b_2 \ \cdots \ b_n)$. We say $\sigma < \pi$, if there exists an element $i \in [n]$, such that $\forall j < i, \sigma_{(j)} = \pi_{(i)}$ and