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Abstract: In this note, we give a simple proof of Jacobi’s triple product identity
using g-binomial theorem.
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1. Introduction

Jacobi triple product identity states that
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Andrews [1] gave a proof of (1.1) using two identities of Euler. Combinatorial
proofs of Jacobi’s triple identity were given by Wright [7], Cheema [2] and Sudler
[6]. We can also find a proof of (1.1) in [3]. Hirschhorn [4,5] has proved Jacobi’s
two-square and four-square theorems using Jacobi’s triple product identity. The
main purpose of this note is to give a simple proof of (1.1) using only g-binomial
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Changing a to a/b, t to bt, and letting b — 0 in (1.2), we obtain
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Putting a = —1 in the above identity, we deduce
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