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Abstract: This paper proposes a density estimation technique whereby a moment-
based adjustment is applied to the saddlepoint approximation as determined from
the empirical cumulant-generating function associated with a given set of observa-
tions. When two variables are involved, the product of saddlepoint density esti-
mates of the marginal distributions is adjusted by means of a bivariate polynomial.
Unlike kernel density estimates, the modified saddlepoint density estimates have
simple functional representations that readily lend themselves to algebraic manipu-
lations. Since the proposed methodology relies essentially on a determinate number
of sample moments, it is particularly well suited for modeling massive data sets. As
well, it should lead to improved density estimates in connection with the countless
current applications arising in various fields of scientific investigation. For illustra-
tive purposes, the density estimation approach being advocated herein is applied
to two univariate and two bivariate data sets.

Keywords: Saddlepoint approximation; density estimation; moments; empirical
cumulant-generating function; big data; bivariate density estimate.

2010 Mathematics Subject Classification: 62G07; 62E17; 62H10.

1. Introduction
The saddlepoint density approximation that was introduced by Daniels (1954),

as well as its later refinements, may prove inaccurate when applied over the en-
tire support of certain continuous distributions. This deficiency is illustrated in
Figure 1.1 where the saddlepoint approximation of the density function of a cer-
tain mixture of normal densities previously considered by Huzurbazar (1999) is
superimposed on its exact density function. This paper aims at addressing such
shortcomings, mainly in the context of density estimation.
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Feuerverger (1989) investigated some properties of the saddlepoint approxi-
mation in connection with the estimation of the density of a univariate sample
mean. Ronchetti and Welsh (1994) extended Feuerverger’s results to multivari-
ate M -estimators. Hu et al. (2008) also made use of an empirical saddlepoint
approximation in connection with stratified random sampling schemes. The sad-
dlepoint approximation has been successfully applied in econometrics, biostatistics,
engineering, as well as many other quantitative fields of research. An improved sad-
dlepoint approximation was proposed by Smyth and Podlich (2002) to model the
general birth process. It is still finding a variety of new statistical applications,
as can been seen for example from the recently published papers of Hyrien et al.
(2010), Kolassa and Li (2010), Demaso et al. (2011), Kolassa and Robinson (2011)
and Marsh (2011). For an informative review on the saddlepoint methodologies,
as well as their derivations and applications, the reader is referred to Reid (1988)
and Butler (2010).

In light of the general density approximation results that were established in
Provost (2005), it is explained in this paper that an initial saddlepoint density
estimate or approximant can be improved upon by multiplying it by a moment-
based polynomial adjustment. Approximation methods that are based on moments
are particularly useful when the exact density of a statistical quantity cannot be
obtained in closed form but its moments can be readily evaluated, as for instance
is the case for numerous test statistics encountered in multivariate analysis. The
univariate and bivariate cases are considered in Sections 2 and 3, respectively.
Both density approximation and density estimation are discussed. The proposed
methodology is then applied to several data sets in Section 4.

We conclude this introductory section by defining the saddlepoint density and
distribution function approximations as defined by Daniels (1954) and Lugannani
and Rice (1980), respectively. Daniels’ saddlepoint approximation of the prob-
ability density function (PDF) of a continuous random variable Y at a point y
belonging to its support is given by

g(y) =
(

2πK ′′(ζ̂)
)−1/2

exp(K(ζ̂)− ζ̂ y), (1.1)

where K(ζ) is the cumulant-generating function of Y, K ′′(·) is its second derivative,
and the saddlepoint ζ̂ is the single real solution to the equation K ′(ζ) = y.

The Lugannani-Rice approximation of the cumulative distribution function
(CDF) of a continuous random variable Y at the point y is obtained as follows
(whenever y is not equal to the expected value of Y):

Pr(Y 6 y) ≈ Φ(ŵ)− φ(ŵ)

(
1

v̂
− 1

ŵ

)
, (1.2)
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where Φ(·) and φ(·) respectively denote the CDF and PDF of the standard normal
distribution,

v̂ = ζ̂ (K ′′(ζ̂))1/2

and

ŵ = sgn(ζ̂)

√
2(ζ̂ y −K(ζ̂)) ,

sgn(·) representing the sign function.

Figure 1.1: A mixture of normal PDF’s and its saddlepoint approximation (dashed line).

2. Univariate Methodology

It is explained in the next two subsections that one can obtain more accurate
saddlepoint density approximants or estimates by making use of certain polynomial
adjustments.

2.1 Modified Saddlepoint Density Approximants

Let Y be a continuous random variable and K(t) denote its cumulant-generating
function. First, the Lugannani-Rice saddlepoint approximation to the distribution
function of Y , as specified by Equation (1.2), is utilized in order to determine an
interval whose associated probability is nearly one. For example, in the case of
a semi-infinite support, one could initially choose the upper end point u in such
a way that the saddlepoint distribution function evaluated at u is greater than
1− 10−15 (or some other numerical value that is nearly equal to one). Similarly, if
the lower bound of the support of the distribution were unknown, one could select
`, the lower end point of the initial support of the approximate distribution, to be
such that the saddlepoint distribution function evaluated at ` is less than 10−15.
For an infinite support, both end points ` and u would have to be determined in
this manner.
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Saddlepoint density approximations are then evaluated from Equation (1.1) at
multiple points within this initial support (for instance, fifty equidistant points)
and a second order interpolating spline, g(y), which is fitted to these points, serves
as a continuous representation of an initial approximation to the density curve. The
points of intersection of this spline with the abscissa determine the support (l?, u?)
of the initial approximate density function, g∗(y), which is obtained by normalizing
the spline on that support and referred to a the base density function. Note that
such a spline can be readily obtained and manipulated algebraically, for example
by utilizing the symbolic computation software Mathematica, which treats it as a
single function.

Finally, a polynomially adjusted density approximation of the following form is
assumed:

ψd(y) = g∗(y)
d∑
j=0

ξj y
j . (2.1)

The polynomial coefficients ξj are determined by equating µ(h), the hth moment of

Y, which for instance can be obtained as ∂ heK(t)

∂t h

∣∣∣
t=0

, to the hth moment determined

from the approximate distribution specified by ψd(y). That is,

µ(h) =

∫ u?

l?
yh g∗(y)

d∑
j=0

ξj y
j dy

=
d∑
j=0

ξj

∫ u?

l?
yh+jg∗(y) dy

≡
d∑
j=0

ξjm(h+ j), h = 0, 1, . . . , d, (2.2)

where m(h) denotes the hth moment associated with g∗(y). This yields a system
of d+ 1 linear equations whose solution is

ξ0
ξ1
...
ξd

 =


m(0) m(1) · · · m(d− 1) m(d)
m(1) m(2) · · · m(d) m(d+ 1)

...
...

. . .
...

...
m(d) m(d+ 1) · · · m(2d− 1) m(2d)


−1

1
µ(1)

...
µ(d)

 . (2.3)

The integrated squared difference (ISD) between approximations of degrees δ and
δ + 1 is proposed as a means of selecting a suitable degree for the polynomial
adjustment. More specifically, upon evaluating
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Figure 2.1: Unadjusted saddlepoint approximant (black line) and polynomially
adjusted saddlepoint approximant of degree 16 (dashed line) superimposed on a
given mixture of beta densities (grey line).

ISD(δ) =

∫ u?

l?
(ψδ(y)− ψδ+1(y))2 dy (2.4)

for δ = 3, . . . , 20, one would select the degree d = δ for which ISD(δ) is seen to
converge or to reach a predetermined tolerance level. When the density function
to be approximated, say f(y), is known but a simpler representation is desirable,
the proposed approach can be employed in conjunction with a stopping criterion
that would be based on the integrated squared differences between f(y) and ψδ(y).
When the cumulant-generating function is unavailable, it can be approximated by
evaluating

ln

(
b∑

j=1

tj

j!
µ(j)

)
(2.5)

where b should preferably be at least 20.

We close this section with an example. Consider an equal mixture of beta
density functions with parameters (2, 4) and (7, 3), whose exact density as well as
its adjusted and unadjusted approximations are plotted in Figure 2.1. In this case,
a polynomial adjustment of degree 16 is seen to dramatically improve the accuracy
of the saddlepoint approximant.

2.2 Adjusted Saddlepoint Density Estimates

The density approximation technique described in Section 2.1 is now adapted
to the context of density estimation. Given the set of observations y1, y2, . . . , yn,
the empirical cumulant-generating function, as defined for instance in Feuerverger
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(1989), is given by

K∗(t) = ln

(
n∑
i=1

et yi

n

)
. (2.6)

Making use of an estimate of a cumulant-generating function in lieu of an exact
one enables one to obtain saddlepoint-type density estimates that can be polyno-
mially adjusted as well. In this case, the normalized spline, g∗(y), is adjusted by
means of a polynomial whose coefficients are obtained from Equation (2.3) wherein
µ(h) =

∑n
i=1 y

h
i /n. Thus, the proposed approximation methodology can also be uti-

lized for estimating density functions by making use of sample moments instead
of exact moments. Note that unlike kernel density estimates, the resulting density
estimates have simple functional forms. As a stopping rule, one can then select
the degree d = δ for which ISD(δ) as defined in Equation (2.4) attains a mini-
mum value. Alternatively, the degree of the adjustment of a density estimate could
be determined by re-expressing the polynomial adjustment in terms of a linear
combination of the orthogonal polynomials associated with the base density and
proceeding as explained in Jiang and Provost (2011).

3. Bivariate Methodology
In the bivariate case, the univariate methodology is first applied without ad-

justments to each component of the standardized vector, the product of the re-
sulting density functions serving as a base density, which is then multiplied by a
moment-based bivariate polynomial adjustment. On making use of the inverse of
the standardizing transformation, one finally obtains the requisite density approx-
imant or estimate, as the case may be.

3.1 Standardization and Base Density
Let (µU , µV )′ and Σ denote the mean and covariance matrix of a continuous ran-

dom vector (U, V )′ whose support is (a, b)×(c, d). First, we apply the standardizing
transformation, (

X
Y

)
= Σ−

1
2

(
U − µU
V − µV

)
, (3.1)

where Σ−
1
2 denotes the inverse of the symmetric square root of the covariance

matrix Σ. Then, unadjusted saddlepoint approximants, which are represented by
normalized splines, are utilized to model the respective density functions of X
and Y whose product, that is, g∗X(x) g∗Y (y), provides an initial bivariate density
approximant that serves as base density.

Given a set of bivariate observations (uk, vk), k = 1, . . . , n, one would replace
µU , µV and Σ by their maximum likelihood estimates in Equation (3.1) in order to
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obtain the transformed data points (xk, yk), k = 1, . . . , n, wherefrom the associated
empirical cumulant-generating functions and sample moments can be determined
for each component. Then, one would take the product of the resulting component-
wise density estimates, g∗X(x) and g∗Y (y), as initial bivariate density estimate.

3.2 Bivariate Polynomial Adjustment and Inverse Transformation
First, we note that whenever the joint density function of U and V , hU,V (·, ·),

is known, the joint density function of X and Y can be expressed as

fX,Y (x, y) = hU,V (β11x+ β12y + µU , β21x+ β22y + µV )× |Σ|
1
2 , (3.2)

where |Σ| 12 is the Jacobian of the inverse transformation,

(
U
V

)
= Σ

1
2

(
X
Y

)
+

(
µU
µV

)
, (3.3)

with Σ
1
2 ≡

(
β11 β12
β21 β22

)
.

The initial approximation or estimate of the joint density function of X and Y,
that is, of g∗X(x)g∗Y (y), is then adjusted by means of a bivariate polynomial of orders
t and t denoted by pt(x, y) whose coefficients are such that the joint moments, as
determined from g∗X(x) g∗Y (y) pt(x, y), coincide with those of X and Y or the joint
sample moments of the transformed data, (xk, yk), k = 1, . . . , n, in the case of a
density estimate. That is, we let∫ d

c

∫ b

a

xi yjg∗X(x) g∗Y (y) pt(x, y) dx dy = µi,j (3.4)

for i = 1, . . . , t and j = 1, . . . , t, where

µi,j = E[X iY j] =

∫ d

c

∫ b

a

xi yj fX,Y (x, y) dx dy,

fX,Y (x, y) being as given in Equation (3.2) or

µi,j =
n∑
k=1

xik y
j
k/n

when one seeks a density estimate. On letting

mh,k =

∫ d

c

∫ b

a

xh yk g∗X(x) g∗Y (y) dx dy



8 South East Asian J. of Mathematics and Mathematical Sciences

be the joint moments of orders h and k associated with the base density function
g∗X(x) g∗Y (y) and

pt(x, y) =
t∑

s=0

t∑
r=0

cr,s x
rys (3.5)

in (3.4), and then interchanging the sums and the integrals, one has

t∑
s=0

t∑
r=0

cr,smi+r,j+s = µi,j , (3.6)

for i = 0, 1, . . . , t and j = 0, 1, . . . , t, which, in matrix notation, can be expressed
as

M c = µ ,

that is,



m0,0 · · · mt,0 · · · m0,t · · · mt,t
...

. . .
... · · · ...

. . .
...

mt,0 · · · m2t,0 · · · mt,t · · · m2t,t
...

. . .
... · · · ...

. . .
...

m0,t · · · mt,t · · · m0,2t · · · mt,2t
...

. . .
... · · · ...

. . .
...

mt,t · · · m2t,t · · · mt,t+1 · · · m2t,2t





c0,0
...
ct,0
...
...
c0,t
...
ct,t


=



µ0,0
...
µt,0

...

...
µ0,t

...
µt,t


, (3.7)

where c and µ are (t + 1)2-dimensional vectors whose components appear in the
same order and M is a (t + 1)2 × (t + 1)2 matrix whose rows are reflecting the
order of the components of the vector µ in accordance with Equation (3.6). The
ci,j’s are then determined by solving the linear system specified by Equation (3.7)
or, equivalently, by evaluating M−1µ. Accordingly, a joint density approximant or
estimate of the following form is assumed for X and Y:

ft(x, y) = g∗X(x) g∗Y (y) (c · z(x, y))

≡ g∗X(x) g∗Y (y) pt(x, y) (3.8)

where z(x, y) = (1, x, . . . , xt, . . . , yt, . . . , xt yt)′ and c = (c0,0, c1,0, . . . , ct,0, . . . ,
c0,t, . . . , ct,t)

′. Then, on applying the inverse transformation, which is given by
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Equation (3.3), one obtains the resulting joint density approximant or estimate of
the distribution of the original variables U and V as follows:

ht(u, v) = ft(x, y)(α11(u− µU) + α12(v − µV ), α21(u− µU) + α22(v − µV ))/|Σ|
1
2

(3.9)

where Σ−
1
2 ≡

(
α11 α12

α21 α22

)
.

The integrated squared difference between ht(u, v) and ht+1(u, v) (or that be-
tween ht(u, v) and hU,V (u, v) when the latter is known) can be utilized to select a
suitable value of t, paralleling the univariate criteria. It should be pointed out that
the proposed bivariate methodology can be readily extended to the multivariate
setting.

4. Applications

4.1 Univariate Applications

The Buffalo Snowfall Data Set

Consider the data set consisting of the annual snowfall accumulations in Buffalo
from 1910 to 1973 (available from the R package gss). Its distribution is modeled
by making use of the density estimation methodology described in Section 2.2.
The support of the approximate distribution was determined to be the interval
(−22.44, 173.84). Then, saddlepoint density estimates were evaluated at multiple
points within that interval by making use of Equation (1.1) in conjunction with
the empirical cumulant-generating function specified by Equation (2.5). The re-
sulting normalized spline was adjusted by means of a 10th degree polynomial whose
coefficients were evaluated from Equation (2.3). The adjusted saddlepoint density
estimate so obtained as well as a kernel density estimate (whose bandwidth was
determined by Silverman’s rule of thumb) are superimposed on a histogram of the
data in Figure 4.1. The corresponding cumulative distribution functions are plot-
ted in Figure 4.2 along with the empirical distribution function.

Flood Peaks
The ‘flood data’, previously considered by Yue (2001), consists of 77 flood peaks

and volumes, as observed in the Madawaska basin. Only the peaks are considered
in this application. In this case, the normalized saddlepoint spline, g∗(y), was ad-
justed by making use of an 8th degree polynomial. The resulting density estimate
as well as a kernel density estimate are plotted in Figure 4.3 along with a histogram
of the data. The corresponding estimated distribution functions are superimposed
on the empirical distribution function in Figure 4.4.
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Figure 4.1: Adjusted saddlepoint density estimate (dashed line) and kernel density
estimate (solid line) superimposed on a histogram of the Buffalo snowfall data.

Figure 4.2: Saddlepoint CDF estimate adjusted with a 10th degree polynomial
(dashed line) and kernel CDF estimate (solid line) superimposed on the empirical
CDF of the Buffalo snowfall data.
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Figure 4.3: Adjusted saddlepoint density estimate (dashed line) and kernel density
estimate (solid line) superimposed on a histogram of the flood peaks data.

Figure 4.4: Saddlepoint CDF estimate adjusted with an 8th degree polynomial
(dashed line) and kernel CDF estimate (solid line) superimposed on the empirical
CDF of the flood peaks data.
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Figure 4.5: Histogram of the bivariate flood data.

4.2 Bivariate Applications

Flood Peaks and Volumes

Consider the bivariate flood data analyzed by Yue (2001), which includes ob-
servations on both peaks and volumes. A histogram of this data set appears in
Figure 4.5. The bivariate density estimation methodology that is described in
Section 3 was applied in conjunction with the sample estimates of the mean vec-
tor, covariance matrix and moments as well as the empirical cumulant-generating
function associated with each of the standardized variables. Saddlepoint density
estimates were determined for each variable in terms of normalized splines. Then,
the bivariate polynomial adjustment defined in Equation (3.5), whose coefficients
are obtained by solving Equation (3.7) was applied to the product of the marginal
density estimates. A bivariate density estimate for the joint distribution of the
original variables was finally obtained by applying the inverse transformation as
specified by Equation (3.3).

The steps of the procedure are illustrated graphically in Figures 4.6–4.8. The
product of the marginal densities of the standardized variables is plotted in Figure
4.6 and the joint density estimate of the standardized variables once adjusted with
a bivariate polynomial of order 6 in each variable is plotted in Figure 4.7. It is seen
from Figure 4.8 that, on applying the inverse of the standardizing transformation,
the resulting adjusted saddlepoint density estimate appears to be more represen-
tative of the distributional features of the original data than the kernel density
estimate shown in Figure 4.9.
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Figure 4.6: Product of the marginal density estimates of the standardized flood
data.

Figure 4.7: Adjusted density estimate of the standardized flood data (t = 6).

Figure 4.8: Adjusted saddlepoint density estimate of the original flood data after
applying the inverse transformation.
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Figure 4.9: Kernel density estimate of the flood data.

Figure 4.10: Histogram of the Old Faithful data.

Figure 4.11: Adjusted saddlepoint density estimate of the Old Faithful data.
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Figure 4.12: Kernel density estimate of the Old Faithful data.

The Old Faithful Data Set
The Old Faithful geyser data is available from the R package datasets (see also

Azzalini and Bowman (1990)). This data set consists of the observed waiting times
between eruptions and the duration of the eruptions in minutes. A histogram of
the 272 bivariate observations is shown in Figure 4.10. On applying the proposed
bivariate density estimation methodology, one obtains the adjusted saddlepoint
density estimate shown in Figure 4.11. The kernel density estimate appearing in
Figure 4.12 turns out to be to be very similar. All the calculations were carried
out with the symbolic computation package Mathematica, the code being available
from the authors upon request.
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