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Abstract: The aim of the present paper is to further study the S-generalized
Gauss hypergeometric function transform recently introduced by Srivastava, Jain
and Bansal [11]. In the course of our study, we establish image of Fox H-function
in the S-Generalized Gauss hypergeometric function transform and obtain the im-
ages of five useful and important cases of Fox H-function (Generalized Bessel func-
tion, Gauss Hypergeometric function, Generalized Mittag-LefHer Function, Kratzel
Function and Lorenzo Hartley G-function) under the S-generalized Gauss hyper-
geometric function transform.
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1. Introduction and Definitions
S-Generalized Gauss Hypergeometric Function

The S-generalized Gauss hypergeometric function F,Sa a, b; c; z) was intro-
duced and investigated by Srivastava et al. [5, p. 350, Eq. (1.12)]. It is represented
in the following manner:
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provided that, (SR(p) > 0; min{9R(a), R(3), R(7), R(x)} > 0; R(c) > R() > 0)
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in terms of the classical Beta function B(A, 1) and the S-generalized Beta function

BS“#7) (), which was also defined by Srivastava et al. [5, p.350, Eq.(1.13)] as
follows:
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(R(p) 20, min{R(z), R(y), R(e), R(B), R(7), R(p)} > 0)

and (M), denotes the Pochhammer symbol defined (for A\ € C) by (see [6, p. 2 and
pp. 4-6]; see also [7, p. 2]):
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provided that the Gamma quotient exists (see, for details, [9, p. 16 et seq.] and
[10, p. 22 et seq.]).

For 7 = p, the S-generalized Gauss hypergeometric function defined by (1.1) re-
duces to the following generalized Gauss hypergeometric function Fp(a’ﬁ ;T)(a, b;c; z)
studied earlier by Parmar [14, p.44]:
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(R(p) > 0; min{NR(a),R(B),R(r)} >0 R(c) > R(D) > 0).

which, in the further special case when 7 = 1, reduces to the following extension
of the generalized Gauss hypergeometric function (see, e.g., [4, p.4606, Section 3];
see also [3, p. 39]):
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(R(p) = 0; min{R(a),R(B)} >0; R(c)>R(b) >0)
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Upon setting a = f in (1.5), we arrive at the following extended Gauss hypergeo-
metric function (see [13, p.591, Egs. (2.1) and (2.2)]:

Fyp(a,bic;2) = Z%(a)ang)(;; Z_CZ; b)i—:b (2] < 1) (1.6)

(R(p) = 0; R(c) > R(b) >0)

The S-Generalized Gauss Hypergeometric Function Transform
Srivastava and the present author have recently introduced the following S-
generalized Gauss hypergeometric function transform [11]:

&1 (2);5] = p(s) = / " OB (0, by s 52) f(2)dz (L.7)

where f(z) € A, and A denotes the class of functions for which
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provided that the existence conditions in (1.1) for the S- generalized Gauss hyper-
geometric function FL7™) () are satisfied and
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R(wg) >0 or R(wy) =0 and R(w; —a+1)< O} (1.9)

Fox H-Function

A single Mellin-Barnes contour integral, occurring in the present work, is now
popularly known as the H-function of Charles Fox (1897-1977). It will be defined
and represented here in the following manner (see, for example, [8, p. 10]):

MN MN (aj?aj)l,P VN (alaal)y"' a(a'PaaP)
Hpp 2] = Hpy' |2 = Hpy |2
(b5, Bi)1.q (b1, 51), -, (bg, Bo)
1
= — [ O(s)z° ds, (1.10)

27'(—1 I



118 South FEast Asian J. of Mathematics and Mathematical Sciences

where i = v/—1, z € C\ {0}, C being the set of complex numbers,
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an empty product being interpreted to be 1. Here £ is a Mellin-Barnes type contour

in the complex s-plane with appropriate indentations in order to separate the two
sets of poles of the integrand ©(s) (see, for details, [1] and [8]).

2. Main Result
In this section, we obtain the image of Fox H-function under the S - generalized
Gauss hypergeometric function Transform.

2.1. The S-Generalized Gauss Hypergeometric Transform of the H-
function

The S-Generalized Gauss hypergeometric Transform (1.7) of Fox H-function
(1.10) defined as follows :
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provided that the existence conditions in (1.1) for the S-Generalized Gauss hyper-

geometric function F,Sa’ﬁ ”’“)(

a, b; c; z) are satisfied and
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(i) min 9%(/@#’5—”?) +1>0 (i) max m(n—a+"(L”) +1<0
1<j<M i 1<j<N “J

Proof. To prove the result (2.1), we first write the complex integral representation

of S-generalized Gauss hypergeometric function defined in [11] and then change

the order of £—integral with z-integral (which is permissible under the conditions

stated), we obtain (say A)
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(2.2)

Now we evaluate the z-integral involved in (2.2) with the help of [8, p.15, Eq.
(2.4.1)], we have
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Next, we express S-generalized Beta function in terms of complex integral form.
Finally, we get the right hand side of (2.1) by reinterpreting the result in terms of
H-function of two variables.

Special cases of (2.1)

Here we give S-generalized Gauss hypergeometric function Transform of the
some important special cases of Fox H-Function involving Generalized Bessel func-
tion, Gauss Hpergeometric function, Generalized Mittag-Leffler Function, Kratzel
Function and Lorenzo Hartley G-function.

1. S-generalized Gauss hypergeometric function Transform of Gen-
eralized Bessel Function In (2.1), if we reduce Fox H-Function to the
Generalized Bessel function [8, p.19, Eq.(2.6.10)] by taking M = 1, N =P =
0,Q=2,b=0,0,=1,bp = =\, By = p, we can easily get the following S-
generalized Gauss hypergeometric function Transform of Generalized Bessel
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Function after a little simplification.
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provided that the conditions are easily obtainable from the existing conditions
of (2.1) are satisfied.

S-generalized Gauss hypergeometric function Transform of Gauss
Hypergeometric Function Next, if we reduce Fox H-Function to the Gauss
Hypergeometric function [8, p.19, Eq.(2.6.8)] by takihng M =1, N=P =Q =
2,0 =1—u,a5=1—0v,by =0,bp =1—w,a; =ay = = f=11n (2.1),
we can easily get the following S-generalized Gauss hypergeometric function
Transform of Gauss Hypergeometric Function after a little simplification.
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provided that the conditions are easily obtainable from the existing conditions
of (2.1) are satisfied.

S-generalized Gauss hypergeometric function Transform of Gener-
alized Mittag-Leffler Function Again, if we reduce Fox H-Function to the
Generalized Mittag-Leffler function [2, p.25, Eq.(1.137)] by taking M = N =
P = 1, Q = 2 and ay = 1—57b1 :0,62: 1—’7,041 :Bl = 1,52 :pln (21)7
we can easily get the following S-generalized Gauss hypergeometric function
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Transform of Generalized Mittag-Lefller Function after a little simplification.
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provided that the conditions are easily obtainable from the existing conditions
of (2.1) are satisfied.

4. S-generalized Gauss hypergeometric function Transform of Kratzel
Function In (2.1), if we reduce Fox H-Function to the Kritzel function |2,
p.25, Eq(1141)]bytakingl\/[ Q=2,N=P=0,00 =0,6, = 1,by =
2 By = =, we can easily get the following S-generalized Gauss hypergeometric
functlon Transform of Kratzel Function after a little simplification.
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provided that the conditions are easily obtainable from the existing conditions
of (2.1) are satisfied.
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5. S-generalized Gauss hypergeometric function Transform of Lorenzo
Hartley G-function In (2.1), if we reduce Fox H-Function to the Lorenzo
Hartley G-function [12, p.64, Eq.(2.3)]gupta by taking M = N =P =1, Q
=2, a=1—ra =100 =0,0, = s =1,bp =1+ v —r, we can easily
get the following S-generalized Gauss hypergeometric function Transform of
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Lorenzo Hartley G-function after a little simplification.
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provided that the conditions are easily obtainable from the existing conditions
of (2.1) are satisfied.
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