A SHORT REVIEW OF ESTIMATION OF POPULATION VARIANCE THROUGH RATIO ESTIMATORS

Subhash Kumar Yadav and Himanshu Pandey*

Department of Mathematics and Statistics (A Centre of Excellence), Dr. RML Avadh University, Faizabad-224001, U.P., INDIA E-mail: drskystats@gmail.com

> *Department of Mathematics and Statistics, DDU University, Gorakhpur- 273001, U.P., INDIA E-mail: himanshu_pandey62@yahoo.com

Dedicated to Prof. K. Srinivasa Rao on his 75th Birth Anniversary

Abstract: The present manuscript is a short review of the ratio type estimators of population variance of the study variable using auxiliary information on a single auxiliary variable. In this paper various ratio type estimators of population variance in the literature have been given in chronological order. The large sample properties that is biases and the mean squared errors of these ratio type estimators of population variance have been given up to the first order of approximation. The expressions of the bias and the mean squared error of every mentioned estimator have been given up to the first order of approximation.

Keywords and Phrases: Auxiliary variable, Parameter, Estimator, Bias, Mean Squared Error, Efficiency.

2010 Mathematics Subject Classification: 62D05.

1. Introduction

The variance is one of the important measures of dispersion of the main characteristic under study for the homogeneous units. The most suitable estimator for the estimation of the population parameter under consideration is the corresponding statistic and therefore the most appropriate estimator for population variance is the sample variance of the main variable under study. Although the sample variance is an unbiased estimator of population variance but it has a reasonably large amount of variation. That is its sampling distribution is not very much concentrated round the population variance. Our aim is to find the estimator which may even be biased but it should have minimum mean squared error that is its sampling distribution should be very much concentrated round the population variance. Auxiliary information fulfills this need. Auxiliary variable is highly positively or negatively correlated with the main variable under study. By the use of auxiliary information, the efficiency of the estimator is enhanced. When the main variable under study and the auxiliary variable are positively correlated, ratio type estimators are used for the estimation of parameters. Product type estimators are used when main and auxiliary variables are negatively correlated and the line of regression Y on X passes through origin and in other case regression estimators are used for the estimation parameters. In this short review paper, we have considered positively correlated case only.

Let the finite population under consideration consist of N distinct and identifiable units and let (x_i, y_i) , i = 1, 2, ..., n be a bivariate sample of size n taken from (X, Y) using a *SRSWOR* scheme. Let \overline{X} and \overline{Y} respectively be the population means of the auxiliary and the study variables, and let \overline{x} and \overline{y} be the corresponding sample means.

The Natural and most suitable estimator of population variance is the sample variance given by,

$$t_0 = s_y^2,$$
 (1.1)

It is unbiased, and its variance up to the first degree of approximation is,

$$V(t_0) = \gamma S_y^4(\lambda_{40} - 1)$$
(1.2)

where,
$$\lambda_{rs} = \frac{\mu_{rs}}{\mu_{20}^{r/2} \mu_{02}^{s/2}}, \ \mu_{rs} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^r (X_i - \overline{X})^s, \ \text{and} \ \gamma = \frac{N-n}{nN}$$

Isaki (1983) used the positively correlated auxiliary information and proposed the following usual ratio estimator of population variance as,

$$t_R = s_y^2 \left(\frac{S_x^2}{s_x^2}\right),\tag{1.3}$$

where, $s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$, $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$, $S_x^2 = \frac{1}{N-1} \sum_{i=1}^N (X_i - \overline{X})^2$, $\overline{X} = \frac{1}{N} \sum_{i=1}^N X_i$, $\overline{Y} = \frac{1}{N} \sum_{i=1}^N Y_i$, $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$, $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$.

The expressions for the Bias and Mean Square Error (MSE), up to the first order of approximation, are respectively given by

$$B(t_R) = \gamma S_y^2[(\lambda_{04} - 1) - (\lambda_{22} - 1)], \qquad (1.4)$$

$$MSE(t_R) = \gamma S_y^4 [(\lambda_{40} - 1) + (\lambda_{04} - 1) - 2(\lambda_{22} - 1)], \qquad (1.5)$$

Table-1: Ratio type estimators of population variance, their biases and mean squared errors

Estimator	Bias	MSE
$\hat{S}_{1}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + C_{x}}{s_{x}^{2} + C_{x}} \right]$	$\gamma S_{y}^{2} R_{1} \begin{bmatrix} R_{1} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{1}^{2} (\lambda_{04} - 1) \\ -2R_{1} (\lambda_{22} - 1) \end{bmatrix}$
Kadilar and Cingi (2006b)		
$\hat{S}_{2}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + \beta_{2(x)}}{s_{x}^{2} + \beta_{2(x)}} \right]$	$\gamma S_{y}^{2} R_{2} \begin{bmatrix} R_{2} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{2}^{2} (\lambda_{04} - 1) \\ - 2R_{2} (\lambda_{22} - 1) \end{bmatrix}$
Upadhyaya and Singh (1999)		
$\hat{S}_{3}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + \beta_{l(x)}}{s_{x}^{2} + \beta_{l(x)}} \right]$	$\gamma S_{\gamma}^2 R_3 \begin{bmatrix} R_3 (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{3}^{2} (\lambda_{04} - 1) \\ - 2R_{3} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{4}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + \rho}{s_{x}^{2} + \rho} \right]$	$\gamma S_{y}^{2} R_{4} \begin{bmatrix} R_{4} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{4}^{2} (\lambda_{04} - 1) \\ - 2R_{4} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{5}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} + S_{x}}{S_{x}^{2} + S_{x}} \right]$	$\gamma S_{y}^{2} R_{5} \begin{bmatrix} R_{5} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{5}^{2} (\lambda_{04} - 1) \\ - 2R_{5} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{6}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} + M_{d}}{S_{x}^{2} + M_{d}} \right]$	$\gamma S_{y}^{2} R_{6} \begin{bmatrix} R_{6}(\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{6}^{2} (\lambda_{04} - 1) \\ -2R_{6} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012a)		
$\hat{S}_{7}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + Q_{1}}{s_{x}^{2} + Q_{1}} \right]$	$\gamma S_{\gamma}^2 R_{\gamma} \begin{bmatrix} R_{\gamma} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{7}^{2} (\lambda_{04} - 1) \\ -2R_{7} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012b)		
$\hat{S}_{g}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + Q_{3}}{s_{x}^{2} + Q_{3}} \right]$	$\gamma S_{y}^{2} R_{s} \begin{bmatrix} R_{s} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{8}^{2} (\lambda_{04} - 1) \\ -2R_{8} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012b)		
$\hat{S}_{g}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + Q_{r}}{s_{x}^{2} + Q_{r}} \right]$	$\gamma S_{y}^{2} R_{9} \begin{bmatrix} R_{9} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{9}^{2} (\lambda_{04} - 1) \\ -2R_{9} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012b)		
$\hat{S}_{10}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} + Q_{d}}{S_{x}^{2} + Q_{d}} \right]$	$\gamma S_{y}^{2} R_{10} \begin{bmatrix} R_{10} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{10}^{2} (\lambda_{04} - 1) \\ -2R_{10} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012b)		
$\hat{S}_{11}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} + Q_{a}}{S_{x}^{2} + Q_{a}} \right]$	$\gamma S_{y}^{2} R_{11} \begin{bmatrix} R_{11} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{11}^{2} (\lambda_{04} - 1) \\ -2R_{11} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012b)		
$\hat{S}_{12}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{1}}{s_{x}^{2} + D_{1}} \right]$	$\gamma S_{y}^{2} R_{12} \begin{bmatrix} R_{12} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{12}^{2}(\lambda_{04} - 1) \\ -2R_{12}(\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{13}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{2}}{s_{x}^{2} + D_{2}} \right]$	$\gamma S_{y}^{2} R_{13} \begin{bmatrix} R_{13} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{13}^{2} (\lambda_{04} - 1) \\ - 2R_{13} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		

$\hat{S}_{14}^2 = S_y^2 \left[\frac{S_x^2 + D_3}{S_x^2 + D_3} \right]$	$\gamma S_{y}^{2} R_{14} \begin{bmatrix} R_{14} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{14}^{2} (\lambda_{04} - 1) \\ -2R_{14} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{15}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} + D_{4}}{S_{x}^{2} + D_{4}} \right]$	$\gamma S_{y}^{2} R_{15} \begin{bmatrix} R_{15} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{15}^{2} (\lambda_{04} - 1) \\ -2R_{15} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{16}^2 = s_y^2 \left[\frac{S_x^2 + D_5}{s_x^2 + D_5} \right]$	$\gamma S_{y}^{2} R_{16} \begin{bmatrix} R_{16} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{16}^{2} (\lambda_{04} - 1) \\ -2R_{16} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{17}^2 = s_y^2 \left[\frac{S_x^2 + D_6}{s_x^2 + D_6} \right]$	$\gamma S_{y}^{2} R_{17} \begin{bmatrix} R_{17} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{17}^{2} (\lambda_{04} - 1) \\ -2R_{17} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{13}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{\gamma}}{s_{x}^{2} + D_{\gamma}} \right]$	$\gamma S_{y}^{2} R_{18} \begin{bmatrix} R_{18} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{18}^{2} (\lambda_{04} - 1) \\ -2R_{18} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{19}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} + D_{g}}{S_{x}^{2} + D_{g}} \right]$	$\gamma S_{y}^{2} R_{19} \begin{bmatrix} R_{19} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{19}^{2} (\lambda_{04} - 1) \\ -2R_{19} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2012c)		
$\hat{S}_{20}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{9}}{s_{x}^{2} + D_{9}} \right]$	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ -2R_{20} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{20}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \right]$ Subramani and Kumarpandiyan (2012c)	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ - 2R_{20} (\lambda_{22} - 1) \end{bmatrix}$
$ \frac{\hat{S}_{20}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \right]}{\text{Subramani and Kumarpandiyan (2012c)}} $ $ \hat{S}_{21}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} + D_{10}}{s_{x}^{2} + D_{10}} \right] $	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20}(\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21}(\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ - 2R_{20} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ - 2R_{21} (\lambda_{22} - 1) \end{bmatrix}$
$\begin{split} \widehat{S}_{20}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \right] \\ & \text{Subramani and Kumarpandiyan (2012c)} \\ & \widehat{S}_{21}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} + D_{10}}{s_{x}^{2} + D_{10}} \right] \\ & \text{Subramani and Kumarpandiyan (2012c)} \end{split}$	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ -2R_{20} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ -2R_{21} (\lambda_{22} - 1) \end{bmatrix}$
$\begin{split} \widehat{S}_{20}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \right] \\ & \text{Subramani and Kumarpandiyan (2012c)} \\ & \widehat{S}_{21}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} + D_{10}}{s_{x}^{2} + D_{10}} \right] \\ & \text{Subramani and Kumarpandiyan (2012c)} \\ & \widehat{S}_{22}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + C_{x}}{s_{x}^{2} \beta_{2(x)} + C_{x}} \right] \text{ Kadilar and} \end{split}$	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{22} \begin{bmatrix} R_{22} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ - 2R_{20} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ - 2R_{21} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ - 2R_{22} (\lambda_{22} - 1) \end{bmatrix}$
$\begin{split} \widehat{S}_{20}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{S_{x}^{2} + D_{y}} \right] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{21}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} + D_{10}}{S_{x}^{2} + D_{10}} \right] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + C_{x}}{s_{x}^{2} \beta_{2(x)} + C_{x}} \right] \text{Kadilar and} \\ \text{Cingi (2006b)} \end{split}$	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{22} \begin{bmatrix} R_{22} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ - 2R_{20} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ - 2R_{21} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ - 2R_{22} (\lambda_{22} - 1) \end{bmatrix}$
$\begin{split} \widehat{S}_{20}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} + D_{y}}{S_{x}^{2} + D_{y}} \bigg] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{21}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} + D_{10}}{S_{x}^{2} + D_{10}} \bigg] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} \beta_{2(x)} + C_{x}}{s_{x}^{2} \beta_{2(x)} + C_{x}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{23}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \end{split}$	$\begin{split} \gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{2} R_{22} \begin{bmatrix} R_{22} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{2} R_{23} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \end{split}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ - 2R_{20} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ - 2R_{21} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ - 2R_{22} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{23}^{2} (\lambda_{04} - 1) \\ - 2R_{23} (\lambda_{22} - 1) \end{bmatrix}$
$\begin{split} \widehat{S}_{20}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \bigg] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{21}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} + D_{10}}{s_{x}^{2} + D_{10}} \bigg] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{22}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} \beta_{2(x)} + C_{x}}{s_{x}^{2} \beta_{2(x)} + C_{x}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{22}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{23}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{23}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{21}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{21}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{21}^{2} &= s_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{21}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{21}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] \text{ Kadilar and} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \bigg[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \bigg] $	$\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{22} \begin{bmatrix} R_{22} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{2} R_{23} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ -2R_{20} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ -2R_{21} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ -2R_{22} (\lambda_{22} - 1) \end{bmatrix}$ $\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ -2R_{22} (\lambda_{22} - 1) \end{bmatrix}$
$\begin{split} \widehat{S}_{20}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \right] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{21}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} + D_{10}}{s_{x}^{2} + D_{10}} \right] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \widehat{S}_{22}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + C_{x}}{s_{x}^{2} \beta_{2(x)} + C_{x}} \right] \text{Kadilar and} \\ \text{Cingi (2006b)} \\ \widehat{S}_{23}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \right] \text{Kadilar and} \\ \text{Cingi (2006b)} \\ \widehat{S}_{24}^{2} &= S_{y}^{2} \left[\frac{S_{x}^{2} \beta_{1(x)} + C_{x}}{s_{x}^{2} \beta_{1(x)} + C_{x}} \right] \end{split}$	$\begin{split} &\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{22} \begin{bmatrix} R_{22} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{23} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{24} \begin{bmatrix} R_{24} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \end{split}$	$\begin{split} \gamma S_{y}^{4} & \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ & -2R_{20} (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{4} & \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ & -2R_{21} (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{4} & \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ & -2R_{22} (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{4} & \begin{bmatrix} (\lambda_{40} - 1) + R_{23}^{2} (\lambda_{04} - 1) \\ & -2R_{23} (\lambda_{22} - 1) \end{bmatrix} \\ \gamma S_{y}^{4} & \begin{bmatrix} (\lambda_{40} - 1) + R_{23}^{2} (\lambda_{04} - 1) \\ & -2R_{23} (\lambda_{22} - 1) \end{bmatrix} \\ \end{split}$
$\begin{split} \hat{S}_{20}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} + D_{y}}{s_{x}^{2} + D_{y}} \right] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \hat{S}_{21}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} + D_{10}}{s_{x}^{2} + D_{10}} \right] \\ \text{Subramani and Kumarpandiyan (2012c)} \\ \hat{S}_{22}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + C_{x}}{s_{x}^{2} \beta_{2(x)} + C_{x}} \right] \\ \text{Kadilar and} \\ \text{Cingi (2006b)} \\ \hat{S}_{25}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{2(x)}} \right] \\ \text{Kadilar and} \\ \text{Cingi (2006b)} \\ \hat{S}_{24}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{1(x)} + C_{x}}{s_{x}^{2} \beta_{1(x)} + C_{x}} \right] \\ \hat{S}_{25}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} C_{x} + \beta_{2(x)}}{s_{x}^{2} C_{x} + \beta_{1(x)}} \right] \\ \hat{S}_{25}^{2} &= s_{y}^{2} \left[\frac{S_{x}^{2} C_{x} + \beta_{1(x)}}{s_{x}^{2} C_{x} + \beta_{1(x)}} \right] \end{split}$	$\begin{split} &\gamma S_{y}^{2} R_{20} \begin{bmatrix} R_{20} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{21} \begin{bmatrix} R_{21} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{22} \begin{bmatrix} R_{22} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{23} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{24} \begin{bmatrix} R_{24} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{25} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{2} R_{25} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix} \end{split}$	$\begin{split} &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{20}^{2} (\lambda_{04} - 1) \\ &- 2R_{20} (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{21}^{2} (\lambda_{04} - 1) \\ &- 2R_{21} (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ &- 2R_{22} (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ &- 2R_{23} (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ &- 2R_{23} (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{22}^{2} (\lambda_{04} - 1) \\ &- 2R_{24} (\lambda_{22} - 1) \end{bmatrix} \\ &\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{23}^{2} (\lambda_{04} - 1) \\ &- 2R_{23} (\lambda_{22} - 1) \end{bmatrix} \end{split}$

$\hat{S}_{27}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2}C_{x} + \rho}{S_{x}^{2}C_{x} + \rho} \right]$	$\gamma S_{y}^{2} R_{27} \begin{bmatrix} R_{27} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{27}^{2} (\lambda_{04} - 1) \\ - 2R_{27} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{25}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} S_{x} + C_{x}}{s_{x}^{2} S_{x} + C_{x}} \right]$	$\gamma S_{y}^{2} R_{23} \begin{bmatrix} R_{23} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{28}^{2} (\lambda_{04} - 1) \\ - 2R_{28} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{29}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2}C_{x} + S_{x}}{S_{x}^{2}C_{x} + S_{x}} \right]$	$\gamma S_{y}^{2} R_{29} \begin{bmatrix} R_{29} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{29}^{2} (\lambda_{04} - 1) \\ - 2R_{29} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{30}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} M_{d} + C_{x}}{s_{x}^{2} M_{d} + C_{x}} \right]$	$\gamma S_{y}^{2} R_{30} \begin{bmatrix} R_{30} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{30}^{2} (\lambda_{04} - 1) \\ - 2R_{30} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{31}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2}C_{x} + M_{d}}{S_{x}^{2}C_{x} + M_{d}} \right]$	$\gamma S_{y}^{2} R_{31} \begin{bmatrix} R_{31} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{31}^{2} (\lambda_{04} - 1) \\ -2R_{31} (\lambda_{22} - 1) \end{bmatrix}$
Subramani and Kumarpandiyan (2013)		
$\hat{S}_{32}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} \beta_{1(x)} + \beta_{2(x)}}{s_{x}^{2} \beta_{1(x)} + \beta_{2(x)}} \right]$	$\gamma S_{y}^{2} R_{32} \begin{bmatrix} R_{32} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{32}^{2}(\lambda_{04} - 1) \\ -2R_{32}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{33}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + \beta_{l(x)}}{s_{x}^{2} \beta_{2(x)} + \beta_{l(x)}} \right]$	$\gamma S_{y}^{2} R_{33} \begin{bmatrix} R_{33} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{33}^{2} (\lambda_{04} - 1) \\ - 2R_{33} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{34}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2} \rho + \beta_{2(x)}}{S_{x}^{2} \rho + \beta_{2(x)}} \right]$	$\gamma S_{y}^{2} R_{34} \begin{bmatrix} R_{34} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{34}^{2} (\lambda_{04} - 1) \\ -2R_{34} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{35}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + \rho}{s_{x}^{2} \beta_{2(x)} + \rho} \right]$	$\gamma S_{y}^{2} R_{35} \begin{bmatrix} R_{35} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{35}^{2} (\lambda_{04} - 1) \\ - 2R_{35} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{36}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} S_{x} + \beta_{2(x)}}{s_{x}^{2} S_{x} + \beta_{2(x)}} \right]$	$\gamma S_{y}^{2} R_{36} \begin{bmatrix} R_{36} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{\gamma}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{36}^{2} (\lambda_{04} - 1) \\ - 2R_{36} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{57}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + S_{x}}{s_{x}^{2} \beta_{2(x)} + S_{x}} \right]$	$\gamma S_{y}^{2} R_{37} \begin{bmatrix} R_{37} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{\gamma}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{37}^{2} (\lambda_{04} - 1) \\ - 2R_{37} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{33}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} M_{d} + \beta_{2(x)}}{s_{x}^{2} M_{d} + \beta_{2(x)}} \right]$	$\gamma S_{y}^{2} R_{35} \begin{bmatrix} R_{35} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{33}^{2}(\lambda_{04} - 1) \\ -2R_{33}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{39}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{2(x)} + M_{d}}{s_{x}^{2} \beta_{2(x)} + M_{d}} \right]$	$\gamma S_{y}^{2} R_{39} \begin{bmatrix} R_{39} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{39}^{2}(\lambda_{04} - 1) \\ -2R_{39}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{40}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \rho + \beta_{l(x)}}{s_{x}^{2} \rho + \beta_{l(x)}} \right]$	$\gamma S_{y}^{2} R_{40} \begin{bmatrix} R_{40} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{40}^{2}(\lambda_{04} - 1) \\ -2R_{40}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{41}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{1(x)} + \rho}{s_{x}^{2} \beta_{1(x)} + \rho} \right]$	$\gamma S_{y}^{2} R_{41} \begin{bmatrix} R_{41} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{41}^{2} (\lambda_{04} - 1) \\ -2R_{41} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{42}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} S_{x} + \beta_{l(x)}}{s_{x}^{2} S_{x} + \beta_{l(x)}} \right]$	$\gamma S_{y}^{2} R_{42} \begin{bmatrix} R_{42} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{42}^{2}(\lambda_{04} - 1) \\ -2R_{42}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{43}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{l(x)} + S_{x}}{s_{x}^{2} \beta_{l(x)} + S_{x}} \right]$	$\gamma S_{y}^{2} R_{43} \begin{bmatrix} R_{43} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{43}^{2} (\lambda_{04} - 1) \\ -2R_{43} (\lambda_{22} - 1) \end{bmatrix}$

$\hat{S}_{44}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} M_{d} + \beta_{l(x)}}{s_{x}^{2} M_{d} + \beta_{l(x)}} \right]$	$\gamma S_{y}^{2} R_{44} \begin{bmatrix} R_{44} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{44}^{2} (\lambda_{04} - 1) \\ -2R_{44} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{45}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \beta_{l(x)} + M_{d}}{s_{x}^{2} \beta_{l(x)} + M_{d}} \right]$	$\gamma S_{y}^{2} R_{45} \begin{bmatrix} R_{45} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{45}^{2}(\lambda_{04} - 1) \\ -2R_{45}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{46}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} S_{x} + \rho}{s_{x}^{2} S_{x} + \rho} \right]$	$\gamma S_{y}^{2} R_{46} \begin{bmatrix} R_{46} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{46}^{2} (\lambda_{04} - 1) \\ -2R_{46} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{47}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \rho + S_{x}}{s_{x}^{2} \rho + S_{x}} \right]$	$\gamma S_{y}^{2} R_{47} \begin{bmatrix} R_{47} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{47}^{2} (\lambda_{04} - 1) \\ - 2R_{47} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{48}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} M_{d} + \rho}{s_{x}^{2} M_{d} + \rho} \right]$	$\gamma S_{y}^{2} R_{48} \begin{bmatrix} R_{48} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{45}^{2} (\lambda_{04} - 1) \\ - 2R_{45} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{49}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} \rho + M_{d}}{s_{x}^{2} \rho + M_{d}} \right]$	$\gamma S_{y}^{2} R_{49} \begin{bmatrix} R_{49} (\lambda_{04} - 1) \\ - (\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{49}^{2} (\lambda_{04} - 1) \\ -2R_{49} (\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{50}^{2} = S_{y}^{2} \left[\frac{S_{x}^{2}M_{d} + S_{x}}{S_{x}^{2}M_{d} + S_{x}} \right]$	$\gamma S_{y}^{2} R_{50} \begin{bmatrix} R_{50} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{30}^{2}(\lambda_{04} - 1) \\ -2R_{30}(\lambda_{22} - 1) \end{bmatrix}$
$\hat{S}_{51}^{2} = s_{y}^{2} \left[\frac{S_{x}^{2} S_{x} + M_{d}}{s_{x}^{2} S_{x} + M_{d}} \right]$	$\gamma S_{y}^{2} R_{51} \begin{bmatrix} R_{51} (\lambda_{04} - 1) \\ -(\lambda_{22} - 1) \end{bmatrix}$	$\gamma S_{y}^{4} \begin{bmatrix} (\lambda_{40} - 1) + R_{51}^{2} (\lambda_{04} - 1) \\ - 2R_{51} (\lambda_{22} - 1) \end{bmatrix}$

where, $R_i = \frac{S_x^2}{S_x^2 + w_i}$, i = 1, 2, ..., 51 and $w_1 = C_x$, $w_2 = \beta_{2(x)}$, $w_3 = \beta_{1(x)}$, $w_4 = \rho$, $w_5 = S_x$, $w_6 = M_d$, $w_7 = Q_1$, $w_8 = Q_3$, $w_9 = Q_r$, $w_{10} = Q_d$, $w_{11} = Q_a$, $w_{12} = D_1$, $w_{13} = D_2$, $w_{14} = D_3$, $w_{15} = D_4$, $w_{16} = D_5$, $w_{17} = D_6$, $w_{18} = D_7$, $w_{19} = D_8$, $w_{20} = D_9$, $w_{21} = D_{10}$, $w_{22} = \frac{C_x}{\beta_{2(x)}}$, $w_{23} = \frac{\beta_{2(x)}}{C_x}$, $w_{24} = \frac{C_x}{\beta_{1(x)}}$, $w_{25} = \frac{\beta_{1(x)}}{C_x}$, $w_{26} = \frac{C_x}{\rho}$, $w_{27} = \frac{\rho}{C_x}$, $w_{28} = \frac{C_x}{S_x}$, $w_{29} = \frac{S_x}{C_x}$, $w_{30} = \frac{C_x}{M_d}$, $w_{31} = \frac{M_d}{C_x}$, $w_{32} = \frac{\beta_{2(x)}}{\beta_{1(x)}}$, $w_{33} = \frac{\beta_{1(x)}}{\beta_{2(x)}}$, $w_{34} = \frac{\beta_{2(x)}}{\rho}$, $w_{35} = \frac{\rho}{\beta_{2(x)}}$, $w_{36} = \frac{\beta_{2(x)}}{S_x}$, $w_{37} = \frac{S_x}{\beta_{2(x)}}$, $w_{38} = \frac{\beta_{2(x)}}{M_d}$, $w_{39} = \frac{M_d}{\beta_{2(x)}}$, $w_{40} = \frac{\beta_{1(x)}}{\rho}$, $w_{41} = \frac{\rho}{\beta_{1(x)}}$, $w_{42} = \frac{\beta_{1(x)}}{S_x}$, $w_{43} = \frac{S_x}{\beta_{1(x)}}$, $w_{44} = \frac{\beta_{1(x)}}{M_d}$, $w_{45} = \frac{M_d}{\beta_{1(x)}}$, $w_{46} = \frac{\rho}{S_x}$, $w_{47} = \frac{S_x}{\rho}$, $w_{48} = \frac{\beta_{1(x)}}{M_d}$, $w_{49} = \frac{M_d}{\beta_{1(x)}}$, $w_{50} = \frac{S_x}{M_d}$, $w_{51} = \frac{M_d}{S_x}$. Thus, the bias and MSE of 51 estimators may be written as,

$$B(\hat{S}_{i}^{2}) = \gamma S_{y}^{2} R_{i} [R_{i}(\lambda_{04} - 1) - (\lambda_{22} - 1), i = 1, 2, ..., 51]$$

$$MSE(\hat{S}_{i}^{2}) = \gamma S_{y}^{4} [(\lambda_{04} - 1) + R_{i}^{2}(\lambda_{04} - 1) - 2R_{i}(\lambda_{22} - 1)], i = 1, 2, ..., 51$$
(2.6)

2. Conclusion

In the present short review of the estimators of the population variance, we have considered the ratio type estimators of population variance using positively correlated auxiliary variable. Various ratio type estimators have been given in a chronological order. The biases and mean squared errors of all the estimators have been given up to the first order of approximation. The improvement in estimators can be justified through numerical examples. Since all the estimators of population variance have been given in chronological order, this short review will be very beneficial for the researchers working in the field of sampling especially for the estimation of population variance using information on a single auxiliary variable.

References

- [1] Das, A.K. and Tripathi, T.P. (1978), Use of auxiliary information in estimating the finite population variance, Sankhya, 40: 139-148.
- [2] Garcia, M.K. and Cebrain, A.A. (1997), Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator. Metrika, 45: 171-178.
- [3] Gupta, S. and Shabbir, J. (2008), Variance estimation in simple random sampling using auxiliary information, Hacettepe Journal of Mathematics and Statistics, 37: 57-67.
- [4] Isaki, C.T. (1983), Variance estimation using auxiliary information. Journal of the American Statistical Association, 78: 117-123.
- [5] Kadilar, C. and Cingi, H. (2006 a), Improvement in variance estimation using auxiliary information, Hacettepe Journal of Mathematics and Statistics, 35 (1): 111-115.
- [6] Kadilar, C. and Cingi, H. (2006 b), Ratio estimators for population variance in simple and stratified sampling, Applied Mathematics and Computation, 173: 1047-1058.
- [7] Murthy, M.N. (1997), Sampling theory and methods. Statistical Publishing Society, Calcutta, India.
- [8] Prasad, B. and Singh, H.P. (1990), Some improved ratio type estimators of finite Population variance in sample surveys, Communication in Statistics: Theory and Methods, 19: 1127-1139.

- [9] Reddy, V.N. (1974), On a transformed ratio method of estimation, Sankhya C, 36: 59-70.
- [10] Shabbir, J. and Gupta, S. (2006), On estimation of finite population variance, Journal of Interdisciplinary Mathematics, 9(2), 405-419.
- [11] Singh, D. and Chaudhary, F.S. (1986), Theory and analysis of sample survey designs, New Age International Publisher.
- [12] Singh, H.P. and Solanki, R.S. (2013), A new procedure for variance estimation in simple random sampling using auxiliary information, Statistical Papers, 54, 479-497.
- [13] Singh, H.P., Upadhyaya, U.D. and Namjoshi, U.D. (1988), Estimation of finite Population variance, Current Science, 57: 1331-1334.
- [14] Sisidia, B.V.S. and Dwivedi, V.K. (1981), A modified ratio estimator using coefficient of variation of auxiliary variable. Journal of the Indian Society of Agricultural Statistics, 33(1): 13-18.
- [15] Subramani, J. and Kumarapandiyan, G. (2012a), Variance estimation using median of the auxiliary variable, International Journal of Probability and Statistics, Vol. 1(3), 36-40.
- [16] Subramani, J. and Kumarapandiyan, G. (2012b), Variance estimation using quartiles and their functions of an auxiliary variable, International Journal of Statistics and Applications, 2012, Vol. 2(5), 67-42.
- [17] Subramani, J. and Kumarapandiyan, G. (2012c), Estimation of variance using deciles of an auxiliary variable, Proceedings of International Conference on Frontiers of Statistics and Its Applications, Bonfring Publisher, 143-149.
- [18] Subramani, J. and Kumarapandiyan, G. (2013), Estimation of variance using known coefficient of variation and median of an auxiliary variable. Journal of Modern Applied Statistical Methods, Vol. 12(1), 58-64.
- [19] Subramani, J. and Kumarapandiyan, G. (2015), A Class of Modified Ratio Estimators for Estimation of Population Variance, JAMSI, 11, 1, 91-114.
- [20] Tailor, R. and Sharma, B. (2012), Modified estimators of population variance in presence of auxiliary information, Statistics in Transition-New series, 13(1), 37-46

- [21] Upadhyaya, L.N. and Singh, H.P. (2006), Almost unbiased ratio and producttype Estimators of finite population variance in sample surveys, Statistics in Transition, 7 (5): 10871096.
- [22] Upadhyaya, L.N. and Singh, H.P. (1999), An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys, Vikram Mathematical Journal, 19, 14-17.
- [23] Upadhyaya, L.N. and Singh, H.P. (2001), Estimation of population standard deviation Using auxiliary information, American Journal of Mathematics and Management Sciences, 21(3-4), 345-358.
- [24] Wolter, K.M. (1985), Introduction to Variance Estimation, Springer-Verlag
- [25] Yadav, S.K. and Kadilar, C. (2013a) A class of ratio-cum-dual to ratio estimator of Population variance, Journal of Reliability and Statistical Studies, 6(1), 29-34.
- [26] Yadav, S.K. and Kadilar, C. (2013b), Improved Exponential type ratio estimator of Population variance. Colombian Journal of Statistics, 36(1), 145-152.
- [27] Yadav, S.K., Kadilar, C., Shabbir, J, and Gupta, S. (2015), Improved Family of Estimators of Population Variance in Simple Random Sampling, Journal of Statistical Theory and Practice, 9, 2, 219-226.
- [28] Yadav, S.K. and Kadilar, C. (2014), A two parameter variance estimator using auxiliary information, Applied Mathematics and Computation, 226, 117122.
- [29] Yadav, S.K., Mishra, S.S., Kumar, S. and Kadilar, C. (2016), A new improved class of estimators for the population variance, Journal of Statistics Applications and Probability, 5, 3, 385- 392.
- [30] Yadav, S.K., Mishra, S.S., Shukla, A.K. (2016), Use of Correlation Coefficient and Quartiles of Auxiliary Variable for Improved Estimation of Population Variance, American Journal of Operational Research, 6, 2, 33-39.