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1. Introduction

In his famous paper on modular equations and approximations to π, Ramanu-
jan [2] remarks that “There are corresponding theories in which q is replaced by
one or the other of the functions

q3 := exp
(
−

2π
√

3
·
K ′
3

K3

)
, q4 := exp

(
−
π
√

2K′
4

K4

)

and

q6 := exp
(
−

2πK ′
6

K6

)
,

where

K3 := K3(k) := 2F1Big(
1

3
,
2

3
; 1; k

)
K4 := K4(k) := 2F1

(1

4
,
3

4
; 1; k

)

and

K6 := K6(k) := 2F1
(1

6
,
5

6
; 1; k

)
.”

Here K ′
j stands for Kj(k′) with k′ =

√
1− k2 and q stands for the classical

base given by q = q2 := exp
(
−
πK ′

K

)
with K := K(k) := 2F1

(
1
2 ,
1
2 ; 1; k

)
.

In fact on six pages, pp. 257-262, of his second notebook [3], Ramanujan gives
approximately 50 results without proofs in these theories. All these results have
been proved by Berndt, Bhargava and Garvan in [1], where the theory based on
qr is called theory to base qr or theory to signature r. Among these results are
the following hypergeometric transformations (1.1)-(1.8), which play a key role
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in the development of the alternative theories especially in establishing numer-
ous modular equations, and have been given differing treatments in [1], including
use of computer package MAPLE, parameterization and evaluation theorems be-
longing to the above theories and other hypergeometric transformations. Our
purpose here is, to obtain a common theorem which characterizes not only all
the key transformations (1.1) - (1.8) but all such transformations. However, we
demonstrate the working of our theorem by applying it to (1.1) - (1.8) only, and
without recourse to computers.

(1)
(
1 + p+ p2

)
2F1

(
1

2
,
1

2
; 1;α

)
=
√

1 + 2p 2F1

(
1

3
,
2

3
; 1;β

)
(1.1)

where

α =
p3(2 + p)

1 + 2p
and β =

27p2(1 + p)2

4(1 + p+ p2)3
;

(2) 2F1

(
1

3
,
2

3
; 1;α

)
= (1 + p) 2F1

(
1

3
,
2

3
; 1;β

)
(1.2)

where

α =
p(3 + p)2

2(1 + p)3
and β =

p2(3 + p)

4
;

(3) 2F1

(
1

3
,
2

3
; 1; 1−

(
1− p
1 + 2p

)3)

= (1 + 2p) 2F1

(
1

3
,
2

3
; 1; p3

)
; (1.3)

(4) (2 + 2p− p2) 2F1

(
1

3
,
2

3
; 1;α

)
= 2(1 + 4p+ p2) 2F1

(
1

3
,
2

3
; 1;β

)
(1.4)

where

α =
27p(1 + p)4

2(1 + 4p+ p2)3
and β =

27p4(1 + p)

2(2 + 2p− p2)3
;

(5) 2F1

(
1

4
,
3

4
; 1; 1−

(
1− p
1 + 3p

)2)

=
√

1 + 3p 2F1

(
1

4
,
3

4
; 1; p2

)
; (1.5)

(6)
√

27− 18p− p2 2F1

(
1

4
,
3

4
; 1;α

)
= 3

√
3 + 6p− p2 2F1

(
1

4
,
3

4
; 1; β

)

(1.6)
where

α =
64p

(3 + 6p− p2)2
and β =

64p3

(27− 18p− p2)2
;

(7) 2F1

(
1

2
,
1

2
; 1;

2p

1 + p

)
=
√

1 + p 2F1

(
1

4
,
3

4
; 1; p2

)
; (1.7)
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and

(8)
√

1 + 2p 2F1

(
1

6
,
5

6
; 1;β

)
=
√

1 + p+ p2 2F1

(
1

2
,
1

2
; 1;α

)
; (1.8)

where

α =
p(2 + p)

1 + 2p
and β =

27p2(1 + p)2

4(1 + p+ p2)3
.

In all the above, it is assumed that 0 ≤ p < 1.

Transformation (1.1), along with its companion found in [1,3], is helpful in
going over from some of the classical results (signature 2) to the results in the
cubic theory (theory to base q3) and vice-versa. Transformations (1.1) and (1.2)
have been proved in [1] by employing various parameterization and evaluation
theorems in theories to signature 2 and 3. Transformation (1.2) along with its
companion, also found in [1, 3], gives us some modular equations in the cubic
theory [1,3]. Transformation (1.3) is crucial in establishing the “cubic” analogue
of the well known quartic theta function identity of Jacobi which plays a fun-
damental role in the classical theories of theta and elliptic functions. (1.3) has
been proved in [1] as a special case of a more general transformation found by the
use of MAPLE. This cubic modular equation in turn is important in establishing
certain inversion, evaluation and parameterization theorems in the cubic theory.
Transformation (1.4) also belongs to the cubic theory and that along with its
companion found in [1, 3] is helpful in establishing further modular equations in
the cubic theory [1,3]. (1.4) has been proved in [1] via (1.2) and by employing
further parameterizations. Transformations (1.5), (1.6) and (1.7) belong to the
quartic theory (theory to base q4) and (1.7) is useful in obtaining some of the
theorems in the theory to base q4 from those in classical theory and vice-versa.
(1.7) is the same as Entry (33)(i) of chapter 11 of [3] and its proof is included here
for completeness. In [1], (1.5) has been proved via (1.7) and a companion formula
based on Entry (33)(iv) of chapter 11 of [3]. Further, the proof of (1.6) given in [1]
is based on parameterization results in quartic theory. Similarly, transformation
(1.8) belongs to sextic theory (theory to base q6) and it is helpful in casting the-
orems in classical theory into those in theory of signature 6 and vice-versa [1,3].
Proof of (1.8) furnished in [3] is based on a transformation taking 2F1

(
1
4 ,
1
4 ; 1; z

)

to 2F1
(
1
12 ,

5
12 ; 1;−27z2(z − 4)−3

)
.

In what follows, Section 2 is devoted to our main theorem, Sections 3, 4
and 5 respectively to transformations in cubic theory, quartic and sextic theories.
Incidental to our work and for completeness, we record in Section 6 the differential
equations governing (1.1)-(1.8), without going over the details of their derivations.
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2. Main Theorem

We straight away go to our main theorem

Theorem 2.1. Let a and b constants with 0 < a, b < 1 and let α = α(p), β =
β(p), k = k(p) and l = l(p) be rational functions of p with α(0) = β(0) = 0 and
k(0) = l(0) such that p = 0 is a simple pole with residue 1 of each of the functions
Cf ′ and Cg′ defined in (2.5) below and such that p = 0 is either a simple pole
or point of analyticity of each of Cf and Cg defined in (2.6) below. Then the
transformation

f(p) :=
2F1 (a, 1− a; 1;α)√

k
=

2F1 (b, 1− b; 1; β)√
l

=: g(p) (2.1)

holds if and only if the following conditions are satisfied,

B =
CA

t
(2.2)

and
b(1− b)β ′

B
=
a(1− a)α ′

A
+ T

[
log

(
AT√
t

)]′
, (2.3)

where C is some constant and

t =
l

k
, A =

α(1− α)
α ′ , B =

β(1− β)
β ′

, T =
1

2
(logt)′

and

(·)′ =
d

dp
(·).

Equivalently, f and g both satisfy the same differential equation

u′′ +C ′uu
′ +Cuu = 0 (2.4)

with

Cf ′ :=
(Ak)′

(Ak)
=

(Bl)′

(Bl)
=: Cg′ (2.5)

and

Cf :=
k′

k

{
log

(
Ak′√
k

)}′
−
a(1− a)α

A
=
l′

l

{
log

(
Bl′√
l

)}′
−
b(1− b)β′

B
=: Cg

(2.6)

Proof. Firstly, we have the well known Gaussian differential equation

d

dα

{
α(1− α)

d

dα2
F1 (a, 1− a; 1;α)

}
= a(1− a) 2F1 (a, 1− a; 1;α) .
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This becomes, on using the notations described in (2.1) and (2.3),

(
A
√
kf ′ +

Ak′

2
√
k
f

)′
= α′a(1− a)

√
kf,

or,

A
√
kf ′′ +

Ak′√
k
f ′ +

{(
Ak′

2
√
k

)′
− αa(1− a)

√
k

}
f = 0,

or, on slight manipulation,

f ′′ +
(Ak)′

(Ak)
f +

{
k′

k

(
log

(
Ak′
√
k

))′
−
a(1− a)α′

A

}
f = 0. (2.7)

Thus f satisfies (2.4) with u = f and Cf ′ and Cf as defined in (2.5) and (2.6).
Similarly, g also satisfies (2.4) with u = g and Cg′ and Cg as defined in (2.5) and
(2.6).

Now, it is easy to verify that , under the conditions given on a, b, α, β, k and
l, p = 0 is a regular singular point of (2.4) in each of the cases u = f, u = g
and that the associated indicial equation is r2 = 0. (For completeness we give
the details of this at the end of the proof of this theorem.) Thus one member
of a fundamental set of solutions has a logarithmic singularity at p = 0. Since
f(0) = g(0)(= 1) by the definitions of f and g in (2.1), it follows that for (2.1)
to hold, it is necessary and sufficient that the two differential equations obtained
by putting u = f and u = g in (2.4) are identical. But this is the same as saying
that f and g satisfy (2.4)-(2.6).

Now, (2.5) is equivalent to (2.2), as seen by integrating (2.5). That (2.6) is
equivalent to (2.3) is seen on slight manipulations, using the definition of A,B
and T .

For completeness of the proof, we verify that p = 0 is indeed a regular singular
point of (2.4) in the case u = f and that the associated indicial equation is r2 = 0.
The other case u = g is similar. Now, (2.4) with u = f is

f ′′ + Cf ′f
′ +Cff = 0 (2.8)

where, under the given conditions on a, b, α, β, k and l, the coefficients Cf ′ and
Cf have the power series expansions

Cf ′ =
b1(p)

p
=

1

p

(
b10 + b11p+ b12p

2 + · · ·
)
, with b10 = 1, (2.9)

Cf =
b2(p)

p2
=

1

p2
(
b20 + b21p+ b22p

2 + · · ·
)
, with b20 = 0, (2.10)
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where b1(p) and b2(p) are analytic at p = 0. Thus, in the neighbourhood of p = 0,
(2.8) becomes

p2f ′′ + pb1(p) f
′ + b2(p) f = 0. (2.11)

Functions b1(p) and b2(p) being analytic at p = 0, it is clear that p = 0 is a
regular singular point of (2.11) and the associated indicial equation is

r(r − 1) + b10r + b20 = r(r− 1) + r + 0 = r2 = 0.

This completes the proof of the theorem.

3. Transformations in Cubic Theory

In this section we demonstrate the working of our results of Section 2 by
obtaining some of Ramanujan’s hypergeometric transformations in cubic theory.

Theorem 3.1(p.258, [3]). We have

(
1 + p+ p2

)
2
F1

(
1

2
,
1

2
; 1;α

)
=
√

1 + 2p2F1

(
1

3
,
2

3
; 1;β

)

where

α =
p3(2 + p)

1 + 2p
and β =

27p2(1 + p)2

4(1 + p+ p2)3
.

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a =
1

2
, l = (1 + p+ p2)2, b =

1

3
, k = 1 + 2p

so that

t =
l

k
=

(1 + p+ p2)2

(1 + 2p)
, 1− α =

(1− p)(1 + p)3

(1 + 2p)
, α ′ =

6p2(1 + p)2

(1 + 2p)2
,

T =
3p(1 + p)

(1 + 2p)(1 + p+ p2)
,

1− β =
(2 + p)2(1 + 2p)2(1− p)2

4(1 + p+ p2)3
, β′ =

27p(1− p2)(1 + 2p)(2 + p)

4(1 + p+ p2)4
,

A =
1

6
p(1− p2)(2 + p), B =

p(1− p2)(2 + p)(1 + 2p)

4(1 + p+ p2)2
.

Putting y = 1 + p+ p2, we can rewrite

l = y2, β =
27(y − 1)2

4y3
, t =

y2

1 + 2p
, α ′ =

6(y − 1)2

(4y − 3)
,
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T =
3(y − 1)

y(1 + 2p)
, 1− β =

(4y − 3)(3− y)2

4y3
, β′ =

27(y − 1)(1 + 2p)(3− y)
4y4

,

A =
1

6
(y − 1)(3− y), B =

(y − 1)(1 + 2p)(3− y)
4y2

.

Thus,

tB =
(y − 1)(3− y)

4
and CA = C ·

(y − 1)(3− y)
6

and they are equal with C =
3

2
. Thus (2.2) holds. Now,

b(1− b)β ′

B
−
a(1− a)α ′

A
=

[
6

y2(4y − 3)
−

9(y − 1)

(3− y)(4y − 3)2

]

=
3(y − 1)

y(4y − 3)

[
−

2

y
+

2

y − 1
+

1

y − 3
−

1

4y − 3

]
,

where as T
(
log
(
AT√
t

))′
equals,

d

dy

(
log

y√
1 + 2p

)[
d

dy
log

(
−

(y − 1)2(y − 3)

2y2
√

1 + 2p

)]

=

[
1

y
−

1

(1 + 2p)2

][
−

2

y
+

2

y − 1
+

1

y − 3
−

(dp/dy)

(1 + 2p)

]

=

[
1

y
−

1

4y − 3

][
−

2

y
+

2

y − 1
+

1

y − 3
−

1

4y − 3

]

=
3(y − 1)

y(4y − 3)

[
−

2

y
+

2

y − 1
+

1

y − 3
−

1

4y − 3

]
, also.

Thus (2.3) holds and the proof of the theorem is complete, provided we show
that the singularities at p = 0 of Cf and Cf ′ (or of Cg and Cg′) are as in the
statement of the Theorem 2.1. Indeed, on substituting for a, k,A and α ′, we have

Cf ′ = [log(Ak)]′ =

[
log

{
1

6
p (1− p2)(2 + p)(1 + 2p)

}]′

=
1

p
+ function analytic at 0.

Thus p = 0 is a simple pole of Cf ′ with residue 1, as required.

Also,

Cf =
k′

k

{
(logA)′ +

k′′

k′
−

1

2

k′

k

}
−
a(1− a)α ′

A
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=
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A

=
2

1 + 2p
·
1

p
+ function analytic at 0.

=
2

p
+ function analytic at 0.

Thus, p = 0 is a simple pole of Cf , as required. Similarly, Cg′ and Cg each
have simple pole at p = 0 with residue 1 for Cg′ .

Theorem 3.2.(p.258, [3]).

2F1

(
1

3
,
2

3
; 1;α

)
= (1 + p) 2F1

(
1

3
,
2

3
; 1;β

)

where

α =
p(3 + p)2

2(1 + p)3
and β =

p2(3 + p)

4
,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a = b =
1

3
, k = (1 + p)2, l = 1

so that,

1− α =
(1− p)2(2 + p)

2(1 + p)3
, α ′ =

3(3 + p)(1− p)
2(1 + p)4

1− β =
(1− p)(2 + p)2

4
, β′ =

3p(2 + p)

4

t =
l

k
= (1 + p)−2 , T = −

1

1 + p
,
T
√
t
= −1

A =
p(3 + p)(1− p)(2 + p)

6(1 + p)2
, B =

p(3 + p)(1− p)(2 + p)

12
.

Clearly, tB = CA holds with C =
1

2
and hence (2.2) holds. Further

b(1− b)β′

B
−
a(1− a)α ′

A
= 2

[
1

(3 + p)(1− p)
−

1

p(1 + p)2(2 + p)

]

=
2

(1 + p)

[
(1 + p)

(3 + p)(1− p)
−

1

p(1 + p)(2 + p)

]
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and T
(
log
(
AT√
t

))′
also equals this, for it equals

−
1

(1 + p)

[
1

p
+

1

3 + p
+

1

p− 1
+

1

2 + p
−

2

1 + p

]

=
2

(1 + p)

[
(1 + p)

(3 + p)(1− p)
−

1

p(1 + p)(2 + p)

]
.

Thus (2.3) also holds and the proof of the theorem is complete, provided we
show that the singularities at p = 0 of Cf and Cf ′ (or of Cg and Cg′) are as in
the statement of the Theorem 2.1. Indeed, on substituting for a, k,A and α ′, we
have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A

=

[
2

p
+ function analytic at 0

]
−
[
2

p
+ function analytic at 0

]
.

= function analytic at 0.

Thus p = 0 is a simple pole of Cf , with residue 1, and a point of analyticity
of Cf . Similarly Cg′ and Cg have the required singularity at p = 0.

Theorem 3.3(p.258, [3]). We have

2F1

(
1

3
,
2

3
; 1; 1−

(
1− p
1 + 2p

)3)

= (1 + 2p) 2F1

(
1

3
,
2

3
; 1; p3

)
,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a = b =
1

3
, k = 1, l = (1 + 2p)2, α = p3, β = 1−

(1− p)3

(1 + 2p)3

so that,

1− α = 1− p3, α ′ = 3p2, A =
1

3
p (1− p3),

β =
9p(1 + p+ p2)

(1 + 2p)3
, 1− β =

(1− p)3

(1 + 2p)3
, β′ =

9(1− p)2

(1 + 2p)4
,
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B =
p(1− p3)
(1 + 2p)2

, t =
l

k
= l = (1 + 2p)2, T =

2

1 + 2p
.

Now, clearly, (2.2) of Theorem 2.1 holds because

tB = p(1− p3)

and

CA = C ·
1

3
· p(1− p3)

and so, tB = CA holds for C = 3.

It remains to show that (2.3) holds. We have,

b(1− b)β′

B
−
a(1− a)α ′

A
=

2(1 + 2p2)(1− 2p− 2p2)

p(1− p3)(1 + 2p)2
. (3.1)

Similarly, T
(
log
(
AT√
t

))′
equals

2

1 + 2p

[{
log

(
1

3
p(1− p3)

)}′
−

4

1 + 2p

]
=

2

1 + 2p

[(
1

p
−

3p2

1− p3

)
−

4

1 + 2p

]

=
2(1 + 2p2)(1− 2p− 2p2)

p(1 + 2p)2(1− p3)
(3.2)

From (3.1) and (3.2) we have that (2.3) also holds.

Lastly, we have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α′

A

= −
2p

(1− p3)
+ function analytic at 0.

Thus p = 0 is a simple pole of Cf ′ with residue 1 and a point of analyticity
of Cf ′ . Similarly, Cg′ and Cg have the required singularity at p = 0. Thus the
theorem is fully proved.

Theorem 3.4(p.258, [3]). We have

(2 + 2p− p2) 2F1

(
1

3
,
2

3
; 1;α

)
= 2(1 + 4p+ p2) 2F1

(
1

3
,
2

3
; 1; β

)
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where

α =
27p(1 + p)4

2(1 + 4p+ p2)3
and β =

27p4(1 + p)

2(2 + 2p− p2)3
,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a = b =
1

3
, k = 4(1 + 4p+ p2)2, l = (2 + 2p− p2)2,

so that,

t =
l

k
=

(2 + 2p− p2)2

4(1 + 4p+ p2)2
,

T =
1

2
(logt)′ =

−6(1 + p+ p2)

(2 + 2p− p2)(1 + 4p+ p2)
,

1− α =
(1− p)4(2 + p)(1 + 2p)

2(1 + 4p+ p2)3
, α ′ =

27(1− p2)3

2(1 + 4p+ p2)4
,

1− β =
(1− p)(2 + p)4(1 + 2p)

2(2 + 2p− p2)3
, β′ =

27p3(p+ 2)3

2(2 + 2p− p2)4
,

A =
α(1− α)
α ′ =

p(1− p2)(2 + p)(1 + 2p)

2(1 + 4p+ p2)2
,

AT
√
t

=
−6p(1− p2)(2 + p)(1 + 2p)(1 + p+ p2)

(1 + 4p+ p2)2 (2 + 2p− p2)2
,

d

dp

(
log

AT√
t

)
=

1

p
+

2p

p2 − 1
+

1

p+ 2
+

2

2p+ 1
+

2p+ 1

1 + p+ p2

−
4(p+ 2)

(p2 + 4p+ 1)
−

4(1− p)
(2 + 2p− p2)

.

Further,

B =
β(1− β)
β′

=
p(1− p2)(2 + p)(1 + 2p)

2(2 + 2p− p2)2
.

Now, (2.2) holds since, it is easily verified that

tB = CA for C =
1

4
.

Also,

b(1− b)β′

B
−
a(1− a)α′

A

= 6

[
p2(p+ 2)2

(2 + 2p− p2)2(2p+ 1)(1− p2)
−

(1− p2)2

p(1 + 4p+ p2)2(2p+ 1)(p+ 2)

]
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and

T

(
log

AT
√
t

)′
=

−6(1 + p+ p2)

(2 + 2p− p2)(1 + 4p+ p2)

×
[
1

p
+

2p

p2 − 1
+

1

p+ 2
+

2

2p+ 1
+

2p+ 1

p2 + p+ 1
−

4(p+ 2)

(p2 + 4p+ 1)
−

4(1− p)
(2 + 2p− p2)

]
.

Thus, to complete the proof of the theorem, it is enough to prove that the
above two expressions on the right sides are equal, or, equivalently,

(1− p2)2(2 + 2p− p2)
p(p+ 2)(2p+ 1)(p2 + p+ 1)(p2 + 4p+ 1)

+
p2(p+ 2)2(p2 + 4p+ 1)

(2p+ 1)(p2 − 1)(p2 + p+ 1)(2 + 2p− p2)

=
1

p
+

2p

p2 − 1
+

1

p+ 2
+

2

2p+ 1
+

2p+ 1

p2 + p+ 1
−

4(p+ 2)

(p2 + 4p+ 1)
−

4(p− 1)

(p2 − 2p− 2)
. (3.3)

For this, we employ the following partial fraction expansions, the details of
proofs of which, being routine, we omit:

(1− p2)2(2 + 2p− p2)
p(p+ 2)(2p+ 1)(p2 + p+ 1)(p2 + 4p+ 1)

=
1

p
+

1

p+ 2
+

1

2p+ 1
+

p

p2 + p+ 1
−

4(p+ 2)

(p2 + 4p+ 1)
. (3.4)

and

p2(p+ 2)2(p2 + 4p+ 1)

(2p+ 1)(p2 − 1)(p2 + p+ 1)(2 + 2p− p2)

=
1

2p+ 1
+

2p

p2 − 1
+

p+ 1

(p2 + p+ 1)
+

4(p− 1)

(2 + 2p− p2)
. (3.5)

Adding (3.4) and (3.5) we have (3.3).

Now, for the nature of singularity of Cf ′ and Cf at p = 0, we easily have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A

=
5

p
+ function analytic at 0.

Thus Cf and Cf ′ , and similarly Cg and Cg′ , have the required type of singu-
larity at p = 0. Thus the theorem is fully proved.
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4. Transformations in Quartic Theory

Theorem 4.1(p.260). We have

2F1

(
1

4
,
3

4
; 1;α

)
=
√

1 + 3p 2F1

(
1

4
,
3

4
; 1; β

)

where

α = 1−
(

1− p
1 + 3p

)2
and β = p2 ,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a = b =
1

4
, k = 1 + 3p, l = 1, α =

8p(1 + p)

(1 + 3p)2
,

so that,

t =
l

k
=

1

1 + 3p
,

T =
1

2
(logt)′ = −

3

2(1 + 3p)
, 1− α =

(
1− p
1 + 3p

)2
, α ′ =

8(1− p)
(3p+ 1)3

,

1− β = 1− p2 , β ′ = 2p ,

A =
α(1− α)
α ′ =

p(1− p2)
(1 + 3p)

, B =
β(1− β)
β′

=
1

2
p (1− p2),

AT√
t

=
−3p(1− p2)
2(1 + 3p)3/2

,

d

dp

(
log

AT√
t

)
=

1

p
+

2p

p2 − 1
−

9

2(3p+ 1)
.

Thus

T

(
log

AT√
t

)′
= −

3(9p3 + 6p2 + 3p− 2)

4p(p2 − 1)(3p+ 1)2
(4.1)

and

a(1− a)β′

B
−
b(1− b)α ′

A
=

3

16

[
4p

p(1− p2)
−

8(1− p)
(3p+ 1)2p(1− p2)

]

= −
3

4

(9p3 + 6p2 + 3p− 2)

p(p2 − 1)(3p+ 1)2
(4.2)
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and,
tB

A
=

1

(1 + 3p)
·
p(1− p2)

2
·

(1 + 3p)

p(1− p2)
=

1

2
= constant C. (4.3)

From (4.3) and by (4.1) and (4.2) we have that (2.2) and (2.3) hold.

Lastly, we easily have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A

=
3

2p
+ function analytic at 0.

Thus Cf and Cf ′ , and similarly Cg and Cg′ have the desired type of singularity
at p = 0. Thus the theorem is fully proved.

Theorem 4.2(p.260). We have

√
27− 18p− p2 2F1

(
1

4
,
3

4
; 1;α

)
= 3

√
3 + 6p− p2 2F1

(
1

4
,
3

4
; 1; β

)

where

α =
64p

(3 + 6p− p2)2
and β =

64p3

(27− 18p− p2)2
,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a = b =
1

4
, k = 9(3 + 6p− p2), l = 27− 18p− p2,

so that,

t =
l

k
=

27− 18p− p2

9(3 + 6p− p2)
, T =

1

2
(log t)′ =

−12(p2 − 2p+ 9)

(27− 18p− p2)(3 + 6p− p2)
,

1− α =
(1− p)3(9− p)
(3 + 6p− p2)2

, 1− β =
(1− p)(9− p)3

(27− 18p− p2)2
,

α ′ =
192(1− p)2

(3 + 6p− p2)3
, β′ =

64p2(9− p)2

(27− 18p− p2)3
,

A =
α(1− α)
α ′ =

p(1− p)(9− p)
3(3 + 6p− p2)

, B =
β(1− β)
β′

=
p(1− p)(9− p)
(27− 18p− p2)

,
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AT√
t

=
−12p(1− p)(9− p)(p2 − 2p+ 9)

(3 + 6p− p2)3/2 (27− 18p− p2)3/2
,

(
log

AT√
t

)′
=

1

p
+

1

p− 1
+

1

p− 9
+

2(p− 1)

p2 − 2p+ 9
+

3(p− 3)

3 + 3p− p2
+

3(p+ 9)

27− 18p− p2
,

(4.4)
Now,

1

T

(
b(1− b)β′

B
−
a(1− a)α ′

A

)
= −

(p2 + 18p− 27)(p2 − 6p− 3)

12(p2 − 2p+ 9)
·

3

16

[
β′

B
−
α ′

A

]

=

[
−p(p− 9)(p2 − 6p− 3)

(p− 1)(p2 − 2p+ 9)(p2 + 18p− 27)
+

9(p− 1)(p2 + 18p− 27)

p(p− 9)(p2 − 6p− 3)(p2 − 2p+ 9)

]
.

(4.5)
After some routine calculations one can obtain the following partial fraction

expansions

−p(p− 9)(p2 − 6p− 3)

(p− 1)(p2 − 2p+ 9)(p2 + 18p− 27)
=

1

p− 1
+

p

p2 − 2p+ 9
+

−3p− 27

p2 + 18p− 27

and

9(p− 1)(p2 + 18p− 27)

p(p− 9)(p2 − 6p− 3)(p2 − 2p+ 9)
=

1

p
+

1

p− 9
+

−3p+ 9

p2 − 6p− 3
+

p− 2

p2 − 2p+ 9
.

Substituting these in (4.5), we have that

1

T

(
b(1− b)β′

B
−
a(1− a)α ′

A

)

=
1

p
+

1

p− 1
+

1

p− 9
+

2(p− 1)

p2 − 2p+ 9
−

3(p− 3)

p2 − 6p− 3
−

3(p+ 9)

p2 + 18p− 27
.

This and (4.4) prove that (2.3) holds.

Now, (2.2) also holds with C =
1

3
, as is easily seen by substituting the

expressions for A,B and t obtained in the beginning of the proof.

Lastly, we easily have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A
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=
2

3p
+ function analytic at 0.

Hence, Cf ′ and Cf , and similarly Cg′ and Cg have the desired singularities at
p = 0. Thus the proof of the theorem is complete.

Theorem 4.3(p.260). We have

2F1

(
1

2
,
1

2
; 1;α

)
=
√

1 + p 2F1

(
1

4
,
3

4
; 1;β

)

where

α =
2p

1 + p
and β = p2,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a =
1

2
, b =

1

4
, k = 1 + p, l = 1,

so that,

t =
l

k
=

1

1 + p
, T =

1

2
(logt)′ =

−1

2(1 + p)
,

1− α =
1− p
1 + p

, α ′ =
2

(1 + p)2
, 1− β = 1− p2 , β′ = 2p,

A =
α(1− α)
α ′ = p(1− p), B =

β(1− β)
β′

=
1

2
p (1− p2)

AT√
t

= −
p(1− p)
2
√

1 + p
,

d

dp

(
log

AT
√
t

)
=

(3p2 + 3p− 2)

2p(p2 − 1)
.

Thus,

T

(
log

AT
√
t

)′
=

(3p2 + 3p− 2)

4p(1 + p)(1− p2)
,

which also equals
b(1− b)β′

B
−
a(1− a)α ′

A
, because it equals

3

4
·

p

p(1− p2)
−

1

2(1 + p)2p(1− p)
=

(3p2 + 3p− 2)

4p(1 + p)(1− p2)
.

Thus (2.3) holds.
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That (2.2) holds is trivial. For,

tB

A
=

1

1 + p
·
1

2

p(1− p2)
p(1− p)

=
1

2
= constant C,

as required.

Lastly, we have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A

=
1

2p
+ function analytic at 0.

Thus Cf ′ andCf , and similarlyCg′ andCg, have the desired type of singularity
at p = 0. Thus the proof of the theorem is complete.

5. Transformations in Sextic Theory

Theorem 5.1(p.262). We have

√
1 + p+ p2 2F1

(
1

2
,
1

2
; 1;α

)
=
√

1 + 2p 2F1

(
1

6
,
5

6
; 1;β

)

where

α =
p(2 + p)

1 + 2p
and β =

27p2(p+ 1)2

4(1 + p+ p2)3
,

given 0 ≤ p < 1.

Proof. In the notations of Theorem 2.1 we take

a =
1

2
, b =

1

6
, k = 1 + 2p, l = 1 + p+ p2,

so that,

t =
l

k
=

1 + p+ p2

1 + 2p
,

T =
1

2
(log t)′ =

1

2

[
(2p2 + 2p− 1)

(2p+ 1)(p2 + p+ 1)

]
,

1− α =
1− p2

1 + 2p
, 1− β =

(p− 1)2(p+ 2)2(2p+ 1)2

4(1 + p+ p2)3
,
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α ′ =
2(1 + p+ p2)

(1 + 2p)2
, β′ = −

27p(p2 − 1)(p+ 2)(2p+ 1)

4(p2 + p+ 1)4
,

A =
α(1− α)
α ′ =

p(2 + p)(1− p2)
2(1 + p+ p2)

, B =
β(1− β)
β′

= −
p(p2 − 1)(p+ 2)(2p+ 1)

4(1 + p+ p2)2
,

AT
√
t

=
p(2 + p)(1− p2)(2p2 + 2p− 1)

4(p2 + p+ 1)5/2 (1 + 2p)1/2
,

(
log

AT
√
t

)′
=

1

p
+

1

p+ 2
+

2p

p2 − 1
+

2(2p+ 1)

2p2 + 2p− 1
−

5(2p+ 1)

2(p2 + p+ 1)
−

1

(2p+ 1)
, (5.1)

1

T

[
b(1− b)β′

B
−
a(1− a)α ′

A

]

=
2(2p+ 1)(p2 + p+ 1)

(2p2 + 2p− 1)

[
15

4(p2 + p+ 1)2
+

(p2 + p+ 1)2

p(p+ 2)(p2 − 1)(2p+ 1)2

]

=
15(2p+ 1)

2(2p2 + 2p− 1)(p2 + p+ 1)
+

2(p2 + p+ 1)3

p(p+ 2)(p2 − 1)(2p+ 1)(2p2 + 2p− 1)

=
1

p
+

1

p+ 2
+

1

p+ 1
+

1

p− 1
−

1

(2p+ 1)
+

2(2p+ 1)

2p2 + 2p− 1
−

5(2p+ 1)

2(p2 + p+ 1)
, (5.2)

on using the partial fraction expansions

15(2p+ 1)

2(2p2 + 2p− 1)(p2 + p+ 1)
= −

5(2p+ 1)

2(p2 + p+ 1)
+

5(2p+ 1)

2p2 + 2p− 1

and

2(p2 + p+ 1)3

p(p+ 2)(p2 − 1)(2p+ 1)(2p2 + 2p− 1)
=

1

p
+

1

p+ 2
+

1

p+ 1
+

1

p− 1
−

1

(2p+ 1)
−

3(2p+ 1)

2p2 + 2p− 1

which are routinely established.

From (5.1) and (5.2) we have that (2.3) holds. Further, it is easily seen that

(2.2) is also satisfied with C = −
1

2
.

Lastly, we easily have

Cf ′ = [log(Ak)]′ =
1

p
+ function analytic at 0

and

Cf =
k′

k
(logA)′ +

k′′

k
−

1

2

(
k′

k

)2
−
a(1− a)α ′

A
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=
3

2p
+ function analytic at 0.

Hence Cf ′ and Cf , and similarly Cg′ and Cg, have the desired type of singu-
larity at p = 0. Thus the proof of the theorem is complete.

6. Differential Equations Governing The Transformations (1.1)-(1.8)

The following table provides the differential equations governing the respective
transformations established in Sections 3-5. We omit the routine details leading
to the differential equations. In table Transformation denote Trans.

Trans. 1.1
2F1

(
1
2
, 1
2
; 1;α

)

√
1 + 2p

p3(2+p)
1+2p

and p(1− p2)(2 + p)(1 + 2p)u′′

=
2F1

(
1
3
, 2
3
; 1;β

)

1 + p+ p2
27p2(1+p)2

4(1+p+p2)3
+2(1 + 5p− 10p3 − 5p4)u′

+2(1 + 2p)(1− 2p − 2p2)u = 0

Trans. 1.2 2F1
(
1
3
, 2
3
; 1;α

) p(3+p)2

2(1+p)3
and p(1− p)(2 + p)(3 + p)(1 + p)2u′′

= (1 + p) 2F1
(
1
3
, 2
3
; 1;β

) p2(3+p)
4

+2(1 + p)(3− 4p − 6p2 − 4p3 − p4)u′

−2(3 + p)(1− p)u = 0

Trans. 1.3 (1 + 2p) 2F1
(
1
3
, 2
3
; 1;α

)
p3 and p(1 + 2p)2(1 − p3)u′′

= 2F1
(
1
3
, 2
3
; 1;β

)
1 −

(
1−p
1+2p

)3
+(1 + 2p)(1− 2p − 4p3 − 4p4)u′

−2(1 − p)2u = 0

Trans. 1.4
2F1

(
1
3
, 2
3
; 1;α

)

2(1 + 4p+ p2)

27p(1+p)4

2(1+4p+p2)3
and p(1 − p2)(2 + p)(1 + 2p)(1 + 4p+ p2)

=
2F1

(
1
3
, 2
3
; 1;β

)

2 + 2p− p2
27p4(1+p)

2(2+2p−p2)3
(2 + 2p − p2)(1 + p + p2)u′′

+2(1 + 5p − 10p3 − 5p4)(1 + 4p + p2)
(2 + 2p− p2)(1 + p+ p2)u′

+2(1 + 2p)[(1 + p + p2)(1 − 7p− 6p2
+2p3 + p4) + 9p(1 − p2)(2 + p)]u = 0

Trans. 1.5
2F1

(
1
3
, 2
3
; 1; β

)

√
1 + 3p

p2 and 4p(1 − p2)u′′ + 4(1− 3p2)u′ − 3pu = 0

= 2F1
(
1
4
, 3
4
; 1;α

)
1 −

(
1−p
1+3p

)2

Trans 1.6
2F1

(
1
4
, 3
4
; 1;α

)

3
√
3 + 6p − p2

64p
(3+6p−p2)2

and p(1− p)(p − 9)u′′ + (3p2 − 20p + 9)u′

=
2F1

(
1
4
, 3
4
; 1;β

)

√
27− 18p− p2

64p3

(27−18p−p2)2
+(p − 3)u = 0

Trans. 1.7
2F1

(
1
2
, 1
2
; 1;α

)

√
1 + p

2p
1+p

and 4p(1 − p2)u′′ + 4(1− 3p2)u′ − 3pu = 0

= 2F1
(
1
4
, 3
4
; 1;β

)
p2

Trans. 1.8
2F1

(
1
2
, 1
2
; 1;α

)

√
1 + 2p

p(2+p)
1+2p

and p(2 + p)(1− p2)(1 + 2p)(1 + p+ p2)u′′

=
2F1

(
1
6
, 5
6
; 1;β

)

√
1 + p + p2

27p2(1+p)2

4(1+p+p2)3
−6(p6 + 3p5 − 5p4 − 15p3 − 21p2 − 13p+ 5)u′

−(p4 + 2p3 + 4p2 + 3p − 1)(1 + 2p)u = 0
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