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1. Introduction, Notations and Definitions
As usual, for a and q complex numbers with |q| < 1, define

(a; q)0 = 1

(a; q)n =
n−1∏
r=0

(1− aqr), for n ∈ N,

(a; q)∞ =
∞∏
r=0

(1− aqr), |q| < 1

and
(a1; q)n(a2; q)n...(ar; q)n = (a1, a2, ..., ar; q)n

An rΦs basic hypergeometric series is defined by ([3], (2.7.2) p. 347) and [1]:
(1.2.22), p. 4)

rΦs

[
a1, a2, ..., ar; q; z
q, b1, b2, ..., bs

]
=
∞∑
n=0

(a1, a2, ..., ar; q)nz
n

(b1, b2, ..., bs; q)n
{(−1)nqn(n−1)/2}1+s−r
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Ramanujan’s Notebooks, specially the second and ‘Lost’ Notebooks contain a large
number of identities and results involving continued fractions. In this paper, we
shall establish certain results involving partition generating functions and continued
fractions.

2. Main Results

In this section, we shall establish the continued fraction representation of the
ratio of two 2Φ1 series

2Φ1

[
α, βq; z
γ

]
2Φ1

[
α, β; zq
γ

] =

∞∑
n=0

(α, βq; q)nz
n

(q, γ; q)n
∞∑
n=0

(α, β; q)nz
nqn

(q, γ; q)n

=
1

1−
z(1− α)/(1− γ)

1−
z(α− γ)(1− βq)/(1− γ)(1− γq)

1−

zq(β − γ)(1− αq)/(1− γq)(1− γq2)
1−

zq(α− γq)(1− βq2)/(1− γq2)(1− γq3)
1− ...

(2.1)
Proof. (2.1)

∞∑
n=0

(α, βq; q)nz
n

(q, γ; q)n
∞∑
n=0

(α, β; q)nz
nqn

(q, γ; q)n

=
1

1−

∞∑
n=0

(α, βq; q)nz
n

(q, γ; q)n
−
∞∑
n=0

(α, β; q)nz
nqn

(q, γ; q)n
∞∑
n=0

(α, βq; q)nz
n

(q, γ; q)n

=
1

1−
z(1− α)/(1− γ)

∞∑
n=0

(α, βq; q)nz
n

(q, γ; q)n
∞∑
n=0

(αq, βq; q)nz
n

(q, γq; q)n


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=
1

1−
z(1− α)/(1− γ)

1−

∞∑
n=0

(βq; q)nz
n

(q; q)n

{
(αq; q)n
(γq; q)n

− (α; q)n
(γ; q)n

}
∞∑
n=0

(αq, βq; q)nz
n

(q, γq; q)n

=
1

1−
z(1− α)/(1− γ)

1−
z(α− γ)(1− βq)/(1− γ)(1− γq)

∞∑
n=0

(αq, βq; q)nz
n

(q, γq; q)n
∞∑
n=0

(αq, βq2; q)nz
n

(q, γq2; q)n

Iterating this process, we get the required result (2.1).

3. Special Cases
In this section, we shall deduce interesting special cases of (2.1).

(i) Applying the property ([2], (2.3.14), p. 33), (2.1) takes the following form,

∞∑
n=0

(α, βq; q)nz
n

(q, γ; q)n
∞∑
n=0

(α, β; q)nz
nqn

(q, γ; q)n

=
1

1−
z(1− α)

(1− γ)−
z(α− γ)(1− βq)

(1− γq)−
zq(β − γ)(1− αq)

(1− γq2)−

zq(α− γq)(1− βq2)
(1− γq3)− ...

(3.1)

(ii) Taking β = 1 and γ = q in (3.1), we obtain

∞∑
n=0

(α; q)nz
n

(q; q)n
=

(αz; q)∞
(z; q)∞

=
1

1−
z(1− α)

(1− q)−
z(α− q)(1− q)

(1− q2)−
zq(1− q)(1− αq)

(1− q3)−

zq(α− q2)(1− q2)
(1− q4)−

zq2(1− q2)(1− αq2)
(1− q5)−

zq2(α− q3)(1− q3)
(1− q6)− ...

(3.2)

(iii) Taking α = 0 and z = q in (3.2), we find

1

(q; q)∞
=

1

1−
q

(1− q)+
q2(1− q)
(1− q2)−

q2(1− q)
(1− q3)+

q4(1− q2)
(1− q4)−
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q3(1− q2)
(1− q5)+

q6(1− q3)
(1− q6)−

q4(1− q3)
(1− q7) + ...

(3.3)

Since
1

(q; q)∞
=
∞∑
n=0

p(n)qn, where p(n) is the number of unrestricted partition of n.

(3.3) is the continued fraction representation of unrestricted partition generating
functions p(n).
(iv) Again, replacing q by q2 and then taking α = 0 and z = q in (3.2), we get

1

(q; q2)∞
=

1

1−
q

(1− q2)+
q3(1− q2)
(1− q4)−

q3(1− q2)
(1− q6)+

q7(1− q4)
(1− q8)−

q5(1− q4)
(1− q10)+

q11(1− q6)
(1− q12)− ...

(3.4)

where
1

(q; q2)
in the generating function of the partitions into odd parts.

(v) Putting
z

α
for z and then taking α→∞ in (3.2), we get

∞∑
n=0

(−)nqn(n−1)/2zn

(q; q)n
= (z; q)∞ =

1

1+

z

(1− q)−
z(1− q)

(1− q2)+
zq2(1− q)
(1− q3)−

zq(1− q2)
(1− q4)+

zq4(1− q2)
(1− q5)−

zq2(1− q3)
(1− q6)+

zq6(1− q3)
(1− q7)− ...

(3.5)

(vi) For z = −q, (3.5) yields

∞∑
n=0

qn(n+1)/2

(q; q)n
= (−q; q)∞ =

1

1−
q

(1− q)+
q(1− q)

(1− q2)−
q3(1− q)
(1− q3)+

q2(1− q2)
(1− q4)−

q5(1− q2)
(1− q5)+

q3(1− q3)
(1− q6)−

q7(1− q3)
(1− q7) + ...

(3.6)

where (−q; q)∞ generates the partitions into distinct parts. Since (−q; q)∞ =
1

(q; q2)∞
, continued fractions in (3.4) and (3.6) are equivalent.

(vii) Taking β = 1 in (3.1), we have

∞∑
n=0

(α; q)nz
n

(γ; q)n
=

1

1−
z(1− α)

(1− γ)−
z(α− γ)(1− q)

(1− γq)−
zq(1− γ)(1− αq)

(1− γq2)−
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zq(α− γq)(1− q2)
(1− γq3)−

zq2(1− γq)(1− αq2)
(1− γq4)−

zq2(α− γq2)(1− q3)
(1− γq5)− ...

(3.7)

(viii) Taking γ = αq in (3.7), we have

(1− α)
∞∑
n=0

zn

(1− αqn)
=

1

1−
z(1− α)

(1− αq)−
zα(1− q)2

(1− αq2)−
zq(1− αq)2

(1− αq3)−

zαq(1− q2)2

(1− αq4)−
zq2(1− αq2)2

(1− αq5)−
zq2α(1− q3)2

(1− αq6)− ...
(3.8)

(ix) Replacing q by q5 and then taking α = qj and z = qi in (3.8), we have

(1− qα)
∞∑
n=0

qni

(1− q5n+j)
=

1

1−
qi(1− qj)

(1− q5+j)−
qi+j(1− q5)2

(1− q10+j)−
qi+5(1− q5+i)2

(1− q15+j)−

qi+j+5(1− q10)2

(1− q2i+j)− ...
, (3.9)

which is continued fraction representation of Lambert series.

(x) Taking
z

α
for z in (3.7) and then taking α→∞ and γ = 0, we find

∞∑
n=0

(−)nqn(n−1)/2zn =
1

1+

z

1−
z(1− q)

1+

zq2

1−
zq(1− q2)

1+

zq4

1−
zq2(1− q3)

1 + ...
(3.10)

(xi) For z = −q, (3.10) yields

∞∑
n=0

qn(n+1)/2 = Φ(q) =
(q2; q2)∞
(q; q2)∞

=
1

1−
q

1+

q(1− q)
1−

q3

1+

q2(1− q2)
1−

q5

1 + ...
(3.11)

where Φ(q) is Ramanujan’s theta function.
(xii) For z = q, (3.10) yields

∞∑
n=0

(−1)nqn(n+1)/2 =
1

1+

q

1−
q(1− q)

1+

q3

1−
q2(1− q2)

1+

q5

1− ...
(3.12)

where
∞∑
n=0

(−)nqn(n−1)/2 is false theta function.

(xiii) Replacing q by q2, z by z
α

and then taking α→∞ in (3.2), we get

∞∑
n=0

(−)nqn(n−1)zn

(q2; q2)n
= (z; q2)∞ =

1

1+

z

(1− q2)−
z(1− q2)
(1− q4)+

zq4(1− q2)
(1− q6)−
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zq2(1− q4)
(1− q8)+

zq8(1− q4)
(1− q10)−

zq4(1− q6)
(1− q12) + ...

(3.13)

(xiv) For z = −q, (3.13) yields

∞∑
n=0

qn
2

(q2; q2)n
= (−q; q2)∞ =

1

1−
q

(1− q2)+
q(1− q2)
(1− q4)−

q5(1− q2)
(1− q6)+

q3(1− q4)
(1− q8)−

q9(1− q4)
(1− q10)+

q5(1− q6)
(1− q12)− ...

(3.14)

where (−q; q2)∞ generates the partition into distinct odd parts.
(xv) Again taking z = −q2 in (3.13) we get

∞∑
n=0

qn(n+1)

(q2; q2)n
= (−q2; q2)∞ =

1

1−
q2

(1− q2)+
q2(1− q2)
(1− q4)−

q6(1− q2)
(1− q6)+

q4(1− q4)
(1− q8)−

q10(1− q4)
(1− q10)+

q6(1− q6)
(1− q12)− ...

(3.15)

where (−q2; q2)∞ generates the partitions into distinct even parts.
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