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1. Introduction
The book entitled Mathematical Analysis (2nd Ed) was written by T. M. Apos-

tol in 1974 is a very popular book. It is very lucid book in the field of mathematical
analysis with regarding language and arrangement of matter. This book is used
as the text book in different universities for bachelors degree and masters degree.
Here, we are trying to expressed our experiences from students life to as a teacher
because of it continuous handling for teaching learning activities in Tribhuvan Uni-
versity. Here, we are tried to simplify the proof and clarify the terminologies used
in eighth chapter series and product.
Now, we start from a very basic term sequence. Generally, the ordered set of num-
bers followed any fixed rule is called a sequence and the combination of terms of
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sequences by using addition or subtraction sign with a fixed rule is called a series.
In precise sense, a sequence defined by the function F from the set of natural num-
bers N to the set of real numbers R. It is denoted by f(x) or {an} and the values
of {a1, a2, ...} are called the terms of the sequence {an}. A sequence which con-
tains finite number of terms is called finite sequence and a sequence having infinite
number of terms is called an infinite sequence. Correspondingly we can define for
the series [1].

Limit Superior
Let {an} be a sequence of real numbers. Suppose there is a real number A

satisfying the following conditions:

1. ∀ε > 0∃N : n > N ⇒ an < A+ ε and

2. given ε > 0 and given m > o,∃ an integer M : n > m⇒ an > A− ε

Then, the real numberA is said to be the limit superior (upper limit) of {an} and is
denoted by A= lim supn→∞ an. It is note that (1)⇒{a1, a2, ...} is bounded above.
If the set {a1, a2, ...} is not bounded above then we define

lim sup
n→∞

an =∞.

In other words, (1) means that ultimately all terms of the sequence lie to the left
ofA + ε. If the set {a1, a2, ...} bounded above but not below and of {an} has no
finite limit superior then we have

lim sup
n→∞

an =∞.

(2) Means that infinitely many terms lie to the right of A− ε. Thus it is clear that
there cannot be more than an A which satisfies the conditions (1) and (2).

Limit Inferior
A real number A is said to be the limit inferior of {an} if A satisfies the above

two conditions:
lim
n→∞

infan = −limsupbn,

where an = bn for n = 1, 2, . . . [2].

Examples

1. (−1)n
(
1 + 1

n

)
Therefore,

lim
n→∞

lim sup an = −1,
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and
lim
n→∞

sup an = 1

2. an = (−1)n

Therefore,
lim
n→∞

infan = −1,

and
lim
n→∞

sup an = 1

3. (−1)nn Therefore,
lim
n→∞

infan = −∞,

and
lim
n→∞

sup an =∞

4. an = n2
(
nλ
2

)
Therefore, [3]

lim
n→∞

infan = 0,

and
lim
n→∞

sup an =∞

Infinite Series
The ordered pair ({an} , {sn})is said to be an infinite series where, snequal to the

nth partial sum of the series.The series is said to be the sequence{sn}is convergent
or divergent.
symbolically,

sn = a1 + a2 + ...+ an =
∞∑
k=1

ak

= a1 + a2 + ...+ an + ...,

= a1 + a2 + ...

Note that here k is a dummy variable [4].

Some Related Theorems

Theorem 1. Let
∑
an = a,

∑
bn = b be convergent series. Then, for every pair

of constants α and β, the series
∑

(αan + βbn) converges to the sum αa + βb.
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i.e.
∑∞

n=1(αan + βbn) = α
∑∞

n=1 an + β
∑∞

n=1 bn.
Proof. Let

∑
an = a ,

∑
bn = b be the convergent series. Then ∀ α , β the series∑∞

n=1(αan + βbn) converges to the sum of αa and βb.
Now,

∑∞
n=1(αan + βbn) = α

∑∞
n=1 an + β

∑∞
n=1 bn. Which follows the proof of the

theorem.

Theorem 2. Let an ≥ 0 for each n = 1, 2, ... Then,
∑
an converges if and only if,

the sequence of partial sum is bounded above.
Proof. Let Sn = a1 + a2 + ... + an. Then clearly Sn is monotonically increased.
Let Sn is monotone & increasing convergent then it is bounded above. ⇒ an is
bounded above. Next, let Sn is bounded above then it has attains its least upper
bounds say s. Since s is an upper bounds for Sn, Sn ≥ s, ∀n ∈ z+. Since s is
the least upper bound, for any ε > 0, ∃ a positive integerN : s − ε < SN . If Sn
is monotonically increasing, Sn ≥ SN for n ≥ N. Then we have, s − ε < Sn ≤ s
⇒ |Sn−s| < ε, n ≥ N . Therefor, limn→∞ Sn = s. Hence the series an is convergent.

Theorem 3 (Telescoping Series). Let{an} and {bn} be two sequences defined
as, an = bn+1 − bn for n=1,2,...,then

∑
an converges if, and only if, limbn exists,

in which case we have n→∞.
∑∞

n=1 an =
∑∞

n=1(bn+1 − bn) = bn+1 − bn
= bn+1 − b1 which follows the proof of the theorem.
a1 = b2 − b1
a2 = b3 − b2
. = ...
. = ...
. = ...
an−1 = bn − bn−1
an = bn+1 − bn
⇒ a1 + a2 + a3 + a4 + ...+ an = b2 − b1 + b3 − b2 + ...+ bn+1 − bn
= bn+1 − b1.

Inserting and Removing Parentheses
Let P be a function whose domain range is a subset of the positive integers such

that

1. P (n) < p(n), n < m Let
∑
an&

∑
bn be related as, b1 = a1+a2+a3+...+ap(1).

2. bn+1 = ap(n)+1 + ap(n)+2 + ...+ ap(n+1), ifn = 1, 2... Then we say that
∑
bn is

obtained from
∑
an by inserting the parentheses and

∑
an is obtained from∑

bn by removing parentheses [5].

Theorem 4 (Cauchy Condition for Series). The series
∑
an converges, if

and only if for every ε > o, there exists an integers N : n ≥ N implies that, i.
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|an+1 + ...+ an+p| < ε for each p = 1, 2, ...
Proof. Let Sn =

∑∞
n=1 an, where |Sn+p − Sn| =|an+1 + an+2 + ...+ an+p| < ε.

In other words, by Cauchys General principle of convergence (for sequences), the
sequences if to each ε > 0,∃n ∈ Z+. |Sn+p − Sn| < ε,∀n ≥ N&p ≥ 1.
Or |an+1 + an+2 + ...+ an+p| < ε.
Now put p = 1 in (i) we find that liman = o is a necessary condition for n = ∞
Convergence of

∑
an. Since this condition is not sufficient for this that we consider

an example.

An =
1

n

When n = 2m and p = 2m is (i) we have,

an+1 + an+2 + ...+ an+p =
1

2m + 1
+ ...

1

2m + 2m
≥ 2m

2m + 2m
≥ 2m

2.2m
=

1

2

Therefore, the Cauchy condition can not satisfied for ε ≤ 1
2

Thus, the series
∞∑
n=1

1

n

is divergent. Harmonic series
∞∑
n=1

1

n

is called harmonic series.

Theorem 5. If
∑
an → S, every

∑
bn obtained from

∑
an by inserting parenthe-

ses also converges to s.
Proof. Let

∑
an and

∑
bn be two series which are related A.P., and bn+1 =

ap(n)+1 + ap(n)+2 + ...+ ap(n+1). Ifn = 1, 2, ... Write Sn =
∑n

k=1 ak, tn =
∑n

k=1 bk.
Then {tn} is a sub-sequence of {Sn}. i.e.tn = Sp(n). [ since

∑
bn is obligated by

inserting parentheses of
∑
an so is its parted sums]. If {Sn} is convergent then {tn}

also convergent. i.e.

lim
n→∞

Sn → S ⇒ lim
n→∞

tn → S

1. Removing parenthesis may destroy convergence. Let observe this, consider∑
bn in which each term is o then obviously convergent. Let p(n) = 2n & let

an = (−1)n which satisfies n = −1, 1,−1, ... oscillatory series.
i) p(n) < p(m), n < m
ii) bn+1 = ap(n)+1 + ...+ ap(n+1). Holds but

∑
an is divergent.
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2. Parenthesis can be removed if we further restrict
∑
bn and p[6].

Rearrangements of Series
Let f be a function from Z+ to Z+ i.e. f : Z+ → Z+ is a one to one & onto

function and assume that f is one- to one on Z+. Let
∑
an and

∑
bn be two

series such that Bn = af(n) where n = 1, 2, ....
Then

∑
bn is said to be a rearrangement of

∑
an. Also an = bf−(n), then

∑
an is

said to be arrangement of
∑
bn [1].

Theorem 6. Let
∑
an be an absolutely convergent series having sum s, then every

rearrangement of
∑
an also converges absolutely and has sums.

Proof. Define {bn} by bn = af(n)... (1) Then,

|b1|+ |b2|+ ...+ |bn| = |af(1)|+ |af(2)|+ ...+ |af(n)| ≤
∞∑
n=1

|an|

⇒
∑
|bn| is bounded by partial sums.

⇒
∑
bn Converges absolutely.

Next we have to show that
∑
bn = s for this. Let tn = b1 + ... + bn and Sn =

a1 + ...+ an Given ε > 0, choose an integers N so that |SN − s| < ε
2

and

∞∑
n=1

|aN+k| ≤
ε

2

Then by triangle inequality we have |tn − s| ≤ |tn − sN |+ |sN − s| < |tnsN | ≤ ε
2
...

(2)
ChooseM > 0 so that {1, 2, ...N} ≤ {f(1), f(2), ...f(M)}
Then n > M ⇒ f(n) > N and we have |tn− sn| = |(b1 + b2 + ...+ bn)− (a1 + a2 +
...+ aN |
= |af(1) + af(2) + ...+ af(n)| − (a1 + a2 + ...+ an)| ≤ |aN+1|+ |aN+2|+ ... ≤ ε

2
.

Then from (2) we have,|tn − sn| < ε
2

+ ε
2

= ε

⇒ lim
n→∞

tn = s

⇒
∑
bn = s. Since

∑
bnis arbitrary.

Theorem 7. Let
∑
an be a conditional convergent series with real valued terms.

Let x and y be given numbers in the[−∞,+∞],with order relation x ≤ y, then ∃ a
rearrangement

∑
bn of

∑
an:

lim
n→∞

f ∩ tn = x
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and

lim
n→∞

suptn = y,

where tn = b1 + ...+ bn (particle sums).
Proof. Neglecting the terms having value zero. Assume that

∑
an has positive

i.e.a1, a2, ..., an 6= o. Denote pn = n(th) positive terms of
∑
an and qn = n(th)

negative terms of
∑
an.

Then
∑
pn and

∑
qn both are divergent series of positive terms (since the se-

ries
∑
an is conditionally convergent). Let {xn} and {yn} be two sequences:

limn→∞ xn = x and limn→∞ yn = y, Where xn < yn. Now, arrange the posi-
tive terms up to k1 (just enough) i.e. p1 + p2 + ... + p(k1) > y1, followed by just
enough (let r1) negative terms i.e. p1 + p2 + ...+ p(k1)− q1 − q2 − ...− q(r1) < x1.
Again we take just enough further positive terms. i.e.p1+ ...+pk1q1−q2− ...−qr1+
pk1 + 1 + pk1 + 2 + ....+ pk2 > y2, followed by just enough further negative terms
i.e.p1 + ...+ pk1q1− ...− qr1 + pk1 + 1 + ...− pk2− qr1 + 1− qr1 + 2− ...− qr2 < x2.
Since

∑
pn and

∑
qn are both divergent series of positive terms so the above steps

are possible. If we continue their steps then we get a rearrangement of
∑
an. Next

we have to show that the partial sums of this arrangement have limit superior y
and limit inferior x. Since (p1 + ...+pk1)+(p1 + ...+pk1−q1...−qr1 +pk1 +1+ ...+
pk2)+(p1+...+pk1−q1...−qr1+pk+1+.+pk2−qr1+1.qr2+pk2+1+...pk3)+... >
(y1 + y2 + y3 + ....) =

∑∞
k=1 yk

Thus {yn} is bounded above and hence it has limit superior.
limn→∞ supyn = y. And (p1 + ...+ pk1− q1− ...− qr1) + (p1 + ...+ pk1− q1...qr1 +
pk1 + pk2 − qr1 + 1 − − − − − qr2) + ... < x1 + x2 + ... Thus the sequences {xn}
bounded from below and hence it has lim inferior.
i.e.

lim
n→∞

infxn = x

Proved.

Sub Series
Let f be a function from infinite subsets of Z+ to Z+, assume that f is one to

one on Z+. Two series
∑
an and

∑
bn are related as bn = a.f(n) if n ∈ Z+, then∑

bn is said to be a sub series of
∑
an [3].

Theorem 8. Let
∑
an be an absolutely convergent, every sub series

∑
bn,also

converges absolutely. Moreover we have,

|
∞∑
n=1

bn| ≤
∞∑
n=1

|bn| ≤
∞∑
n=1

|an|.
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Proof. Since
∑
an converges absolutely, i.e. |

∑
bn| ≤

∑
| an|, Given n ∈ Z+ and

let N be the largest positive integer in the set {f1, f2, ...fn}. Let
∑
bn be a sub

series of
∑
an.

Then,

|
n∑
n=1

bn| ≤
n∑
n=1

|bn| ≤
N∑
n=1

|an| ≤
∞∑
n=1

|an|.

⇒
∑
bn is absolutely convergent. Since

∑
bn is arbitrary.

Theorem 9. Let{f1, f2, ...fn} be a countable collection of functions, each of which
is defined on Z+ with following properties:-

1. Each fn is one to one on Z+.

2. The rang fn is a sub set of Qn of Z+.

3. {Q1, Q2, ...} is a collection of disjoint sets whose union is Z.

OR

1. Each fn is one to on Z+

2. fn(Z+) = Qn ⊂ Z+.

3. Q = {Q1, Q2, ...}, Q1 ∩Q2 ∩ ... = φ, & Q1 ∪Q2 ∪Q3 ∪ ... = Z+.

Let
∑
an be an absolutely convergent and define bk(n) = afk(n), if n ∈ Z+ and

k ∈ Z+. Then (i) for each k,
∞∑
n=1

bk(n)

is an absolutely convergent sub series of
∑
an.

(ii) If

Sk =
∞∑
n=1

bk,

∞∑
n=1

sk,

converges absolutely and has the same sum as

∞∑
n=1

ak.
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Proof. (i) follows from theorem (8).
(ii) Let

tk = |s1|+ |s2|+ ...+ |sk|.

tn ≤
∞∑
n=1

|b1(n)|+ ...+
∞∑
n=1

|b1(k)|

=
∞∑
n=1

(|b1(n)|+ ...+ |bk(n)|)

=
∞∑
n=1

(|af1(n)|+ ...+ |afk(n)|

Since,
∞∑
n=1

(|af1(n)|+ ...+ |afk(n)| ≤
∞∑
n=1

|an|.

⇒
∞∑
n=1

|sk|

has bounded partial sum and hence
∑
sk converges absolutely.

Next we have to show that sum of
∞∑
k=1

|ak| =

sum of
∞∑
k=1

|sk|.

For this, let ε > 0 be given and choose an integer N, n ≥ N
⇒ {

∑∞
k=1 |ak| −

∑n
k=1 |ak|} < ε

2
...(1)

Choose sufficient functions f1, f2..., fr with appearing each terms a1, a2, a3, ..., an
somewhere in

∑∞
n=1 af1(n) + ... +

∑∞
n=1 afk(n) r depended on N and ε. Let

n > r, n > N , then

|s1 + s2 + ...+ sn −
∞∑
k=1

ak| ≤ |a(n+ 1)|+ a(n+ 2)|+ ... <
ε

2
...(2)

From (1) we have

|
∞∑
k=1

ak −
n∑
k=1

ak| <
ε

2
...(3)
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Now combining (2) & (3) we have

|s1 + s2 + ...+ sn −
∞∑
k=1

ak +
∞∑
k=1

ak −
n∑
k=1

ak| ≤ |s1 + s2 + ...+ sn

−
∞∑
k=1

ak|+ |
∞∑
k=1

ak −
n∑
k=1

ak| <
ε

2
+
ε

2
= ε.

In other words we may expressed as,

|s1 + s2 + ...+ sn −
∞∑
k=1

ak| < |a(N + 1)|+ |a(N + 2)|+ ...+ |
∞∑

k=n+1

ak| <
ε

2

+
∞∑

k=n+1

|ak| <
ε

2
+
ε

2
= ε.

Hence this completes the proof.

Double Sequences
A function of whose domain {Z+, Z+} is called a double sequences.

F : {Z+, Z+} → Z+ Converges of a double sequences If a ∈ C, we write (complex
no)

lim
(p,q)→∞

f(p, q) = a

and we say that the Double sequencesf converges to a, provided that the following
condition is satisfied: for every ε > a, f(N) : |f(p, q)a| < ε , p > N, q > N [7].

Theorem 10. Assume that
lim

(p,q)→∞
= a

for each fixed p and that the limf(p, q) exists,then that

lim
p→∞

( lim
q→∞

f(p, q))

.
Also exists and has the value a.
Proof. Let f(p) = limq→∞ f(p, q). Given ε > 0, choose integer N1 So that
|f(p, q) − a| < ε

2
, p > N1, q > N1.... (1) Now, for each p, choose N2 so that

|f(p)− f(p, q)| < ε
2
, q > N2...(2) N2 depends on p&ε. For each p > N1 choose N2,

and then choose a fixed q > N1, q > N2. Then (1) and (2) both are held and we
have |f(p)− a| < ε, p > N1.
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Therefore,limp→∞ f(p) = a
Thus the existences of the double limit limp→∞ f(p, q) & limq→∞ f(p, q) Implies the
existences of the iterated limit.
i.e.

lim
p→∞

( lim
q→∞

) = a.

Double Limit
Limit f(p, q) is called double,

lim
(p,q)→∞

limit.

Iterated Limit

lim
p→∞

( lim
q→∞

f(p, q))

is called the iterated limit. f(p, q) = pq
p2+q2

, p = 1, 2, ... and q = 1, 2, ...,then,

lim
q→∞

= lim
q→∞

(

p
q

1 + p2

q2

) = 0

and hence
lim
p→∞

( lim
q→∞

f(p, q)) = 0,

(i.e. iterated limit) But f(p, q = 1
2
),if p = q&f(p, q) = 2

3
, if p = 2q

Thus it is clear that the double limit cannot exists in this care.

Double Series
Let f be a double sequences and let s be the double sequences defined by

S(p, q) =
∑p

m=1

∑q
n=1 f(m,n).

The order pair (f, s) is said to be a double series and is denoted by the symbol∑
m,n f(m,n) or more briefly, by

∑
f(m,n). The double series is said to converges

to the sum a if lim(p,q)→∞ S(p, q) = a. The each term f(m,n) is said to be a term
of the double series and each S(p, q) is a partial sum. If

∑
f(m,n) has only +ve

terms, it is easy to show that it converges if, and only if, the set of partial sums is
bounded. We say that

∑
f(m,n) converges absolutely if

∑
f(m,n) converges.

Iterated Series
The series

∑∞
m=1

∑∞
n=1 f(m,n) & the series

∑∞
n=1

∑∞
m=1 f(m,n) are said to be

the iterated series converges of both iterated series does not imply their equality:-
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Example. Let a function

F (m,n) =


1 if m = n+ 1, n = 1, 2, 3, ...
−1 if m = n− 1, n = 1, 2, 3, ...
0 otherwise

Then,
∞∑
m=1

∞∑
n=1

f(m,n) = −1,

but [3]
∞∑
n=1

∞∑
m=1

f(m,n) = 1.

Theorem 11. Let f be a complex valued double sequences, Assume that

∞∑
n=1

f(m,n)

converges absolutely for each fixed m and that

∞∑
m=1

∞∑
n=1

f(m,n)

converges. Then,
(i) The double series ∑

m,n

f(m,n)

converges absolutely.
(ii)The series

∞∑
m=1

f(m,n)

converges absolutely for each n. Both iterated series

∞∑
m=1

∞∑
n=1

f(m,n)

&
∞∑
n=1

∞∑
m=1

f(m,n)
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converges absolutely & we have,

∞∑
m=1

∞∑
n=1

f(m,n) =
∞∑
n=1

∞∑
m=1

f(m,n) =
∑
m,n

f(m,n).

Proof. Let a be an arrangement of the double sequence f into a sequences G
defined by G(n) = f [g(n)] ifnεZ+.
Then

∑
G(n) is absolutely convergent because of all the partial sums of the series.

The series
∑
|G(n)| is bounded by the series

∞∑
m=1

∞∑
n=1

|f(m,n)|.

Since
∑
G(n) converges absolutely then the double series

∑
m,n f(m,n) converges

absolutely.
Next we have to prove that

∞∑
m=1

f(m,n)

converges absolutely for each n.
Since, ∑

m,n

f(m,n)

converges absolutely and
∞∑
n=1

G(n) = S

Thus,
∞∑
m=1

f(m,n)

also converges absolutely.
Finally, the series

∞∑
n=1

f(m,n)

converges absolutely as the same (before) manner. Thus clearly the iterated series,

∞∑
m=1

∞∑
n=1

f(m,n),
∞∑
n=1

∞∑
m=1

f(m,n)
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converges and we have,

∞∑
m=1

∞∑
n=1

f(m,n) =
∞∑
n=1

∞∑
m=1

f(m,n) =
∑
m,n

f(m,n).

Theorem 12. Let
∑
am and

∑
bn be two absolutely converges series with sums

A and B respectively. Define double sequences as, F (m,n) = ambn, if (m,n) ∈
Z+.Z+. Then

∑
m,n f(m,n) converges absolutely and has the sum AB.

Proof. Since
∑∞

m=1 |am|
∑∞

n=1 |bn| =
∑∞

m=1

∑∞
n=1 |am||bn|. Then by theorem 11,∑

m,n(ambn) converges absolutely and has sum AB.
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